Effect of Macro, Micro and Nano Loads on The Indentation Behavior of Ti-6Al-4V and Haynes 242 Alloys

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
S. B., K. A., K. Kumar
{"title":"Effect of Macro, Micro and Nano Loads on The Indentation Behavior of Ti-6Al-4V and Haynes 242 Alloys","authors":"S. B., K. A., K. Kumar","doi":"10.15282/ijame.19.2.2022.15.0757","DOIUrl":null,"url":null,"abstract":"Indentation tests were conducted on Ti-6Al-4V and Haynes 242 alloys at macro, micro and nano load range using conventional and depth-sensing indentation instruments to study the load effects on the mechanical behaviour of the alloys. With the increase of indentation loads from macro to nano, a decrease in Young’s modulus and indentation hardness values was observed as a result of the indentation size effect in the alloys. During the loading procedure in macro, micro and nano indentations, the loading curves progressively moved upwards, showing the increase in resistance of the alloys with the increase in indentation load. Compared the depth-sensing instrumented indentation hardness of alloys with the conventional indentation hardness at micro loads, the magnitude of the depth-sensing instrumented indentation hardness is 10-25% greater than the conventional indentation hardness. The reason for this variation is explained as the depth-sensing instrumented indentation hardness is calculated at maximum load with the projected contact residual impression area, Ac, instead of the residual indenter impression projected area, Ar. So the indent pileup and sink-in play a major difference between the depth-sensing instrumented hardness and conventional indentation hardness. The outcome of the experimental work clearly indicates that for evaluation of the hardness usage of projected contact residual impression area provides more accurate results than when residual indenter impression projected area is used. The concept is synonmous to evaluation of engineering stress / strain and true stress / strain using original and actual cross sectional area respectively.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.19.2.2022.15.0757","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Indentation tests were conducted on Ti-6Al-4V and Haynes 242 alloys at macro, micro and nano load range using conventional and depth-sensing indentation instruments to study the load effects on the mechanical behaviour of the alloys. With the increase of indentation loads from macro to nano, a decrease in Young’s modulus and indentation hardness values was observed as a result of the indentation size effect in the alloys. During the loading procedure in macro, micro and nano indentations, the loading curves progressively moved upwards, showing the increase in resistance of the alloys with the increase in indentation load. Compared the depth-sensing instrumented indentation hardness of alloys with the conventional indentation hardness at micro loads, the magnitude of the depth-sensing instrumented indentation hardness is 10-25% greater than the conventional indentation hardness. The reason for this variation is explained as the depth-sensing instrumented indentation hardness is calculated at maximum load with the projected contact residual impression area, Ac, instead of the residual indenter impression projected area, Ar. So the indent pileup and sink-in play a major difference between the depth-sensing instrumented hardness and conventional indentation hardness. The outcome of the experimental work clearly indicates that for evaluation of the hardness usage of projected contact residual impression area provides more accurate results than when residual indenter impression projected area is used. The concept is synonmous to evaluation of engineering stress / strain and true stress / strain using original and actual cross sectional area respectively.
宏、微、纳载荷对Ti-6Al-4V和Haynes 242合金压痕行为的影响
采用常规压痕仪和深度感测压痕仪对Ti-6Al-4V和Haynes 242合金在宏、微、纳米载荷范围内进行压痕试验,研究载荷对合金力学行为的影响。随着压痕载荷从宏观到纳米的增加,合金的杨氏模量和压痕硬度值由于压痕尺寸效应而降低。在宏观、微观和纳米压痕加载过程中,加载曲线逐渐向上移动,表明合金的电阻随压痕载荷的增加而增加。将微载荷下合金的深度感测压痕硬度与常规压痕硬度进行比较,发现深度感测压痕硬度比常规压痕硬度大10 ~ 25%。造成这种差异的原因是,深度感测压痕硬度是在最大载荷下用接触残余压痕投影面积Ac计算的,而不是用压痕残余压痕投影面积Ar计算的。因此,深度感测压痕硬度与常规压痕硬度的主要区别在于压痕堆积和凹陷。实验结果清楚地表明,使用投影接触残余压痕面积评估硬度比使用残余压痕投影面积评估硬度的结果更准确。该概念是工程应力/应变和真实应力/应变分别用原始和实际横截面积进行评估的同义词。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信