Yukari Miki, A. Seki, H. Mishima, Yusuke Maruyama, Kazuki Watanabe, Jingjing Kobayashi-Sun, Isao Kobayashi, Kohei Kuroda, Shion Oshima, Takeru Okamoto, H. Matsubara, A. Srivastav, Y. Tabuchi, J. Hirayama, A. Hattori, Nobuo Suzuki
{"title":"Melatonin is more effective on bone metabolism when given at early night than during the day in ovariectomized rats","authors":"Yukari Miki, A. Seki, H. Mishima, Yusuke Maruyama, Kazuki Watanabe, Jingjing Kobayashi-Sun, Isao Kobayashi, Kohei Kuroda, Shion Oshima, Takeru Okamoto, H. Matsubara, A. Srivastav, Y. Tabuchi, J. Hirayama, A. Hattori, Nobuo Suzuki","doi":"10.32794/mr112500147","DOIUrl":null,"url":null,"abstract":"Melatonin has diverse effects, and has been reported to promote bone formation in addition to regulating the sleep–wake cycle. In the present study, we investigated the effects of melatonin on bone metabolism using ovariectomized (OVX) rats; a model of postmenopausal osteoporosis. Here, we focused on the differences in bone formation when melatonin was subcutaneous injected at day or early night. The OVX rats were injected with melatonin once daily (0.8 or 8 mg/head) between 11:00 to 14:00 or 18:00 to 19:30 for the day or early night, respectively, for six weeks. After completion of the injection, the femur and tibia in the OVX rats were dissected under general anesthesia and examined by quantitative computed tomography (pQCT) and histological analysis, respectively. Interestingly, the trabecular bone mineral density in the femur metaphysis of the OVX rats receiving 8 mg/head melatonin at early night was higher than those receiving melatonin during the day and they recovered to a similar level as the rats with sham treatment. In the diaphysis, the pQCT analysis results indicated that there was no significant difference in bone mineral density between the day and early night melatonin-injected OVX rats. Histological analysis of the secondary trabecular bone in the tibia of the OVX rats, revealed that the bone matrix area of the group receiving 8 mg/head melatonin at early night was higher compared with that of the day group and had a significant difference compared with OVX treatment rats. Taken together, the subcutaneous melatonin injection in OVX rats at early night was found to promote trabecular bone formation better than melatonin injection during the day. The timing of melatonin injection is a crucial factor when examining the influence of bone metabolism.","PeriodicalId":18604,"journal":{"name":"Melatonin Research","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Melatonin Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32794/mr112500147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Melatonin has diverse effects, and has been reported to promote bone formation in addition to regulating the sleep–wake cycle. In the present study, we investigated the effects of melatonin on bone metabolism using ovariectomized (OVX) rats; a model of postmenopausal osteoporosis. Here, we focused on the differences in bone formation when melatonin was subcutaneous injected at day or early night. The OVX rats were injected with melatonin once daily (0.8 or 8 mg/head) between 11:00 to 14:00 or 18:00 to 19:30 for the day or early night, respectively, for six weeks. After completion of the injection, the femur and tibia in the OVX rats were dissected under general anesthesia and examined by quantitative computed tomography (pQCT) and histological analysis, respectively. Interestingly, the trabecular bone mineral density in the femur metaphysis of the OVX rats receiving 8 mg/head melatonin at early night was higher than those receiving melatonin during the day and they recovered to a similar level as the rats with sham treatment. In the diaphysis, the pQCT analysis results indicated that there was no significant difference in bone mineral density between the day and early night melatonin-injected OVX rats. Histological analysis of the secondary trabecular bone in the tibia of the OVX rats, revealed that the bone matrix area of the group receiving 8 mg/head melatonin at early night was higher compared with that of the day group and had a significant difference compared with OVX treatment rats. Taken together, the subcutaneous melatonin injection in OVX rats at early night was found to promote trabecular bone formation better than melatonin injection during the day. The timing of melatonin injection is a crucial factor when examining the influence of bone metabolism.