Alix Nouvel de la Flèche, Jean-Luc Atteia, Jérémie Boy, Alain Klotz, Arthur Langlois, Marie Larrieu, Romain Mathon, Hervé Valentin, Philippe Ambert, Jean-Claude Clemens, Damien Dornic, Eric Kajfasz, Jean Le Graët, Olivier Llido, Aurélia Secroun, Olivier Boulade, Ayoub Bounab, Giacomo Badano, Olivier Gravrand, Sébastien Aufranc, Adrien Lamoure, Lilian Martineau, Laurent Rubaldo, Hervé Geoffray, François Gonzalez, Stéphane Basa, François Dolon, Johan Floriot, Simona Lombardo, Salvador Cuevas, Alejandro Farah, Jorge Fuentes, Rosalía Langarica, Alan M. Watson, Nathaniel Butler
{"title":"CAGIRE: a wide-field NIR imager for the COLIBRI 1.3 meter robotic telescope","authors":"Alix Nouvel de la Flèche, Jean-Luc Atteia, Jérémie Boy, Alain Klotz, Arthur Langlois, Marie Larrieu, Romain Mathon, Hervé Valentin, Philippe Ambert, Jean-Claude Clemens, Damien Dornic, Eric Kajfasz, Jean Le Graët, Olivier Llido, Aurélia Secroun, Olivier Boulade, Ayoub Bounab, Giacomo Badano, Olivier Gravrand, Sébastien Aufranc, Adrien Lamoure, Lilian Martineau, Laurent Rubaldo, Hervé Geoffray, François Gonzalez, Stéphane Basa, François Dolon, Johan Floriot, Simona Lombardo, Salvador Cuevas, Alejandro Farah, Jorge Fuentes, Rosalía Langarica, Alan M. Watson, Nathaniel Butler","doi":"10.1007/s10686-023-09903-x","DOIUrl":null,"url":null,"abstract":"<div><p>The use of high energy transients such as Gamma Ray Bursts (GRBs) as probes of the distant universe relies on the close collaboration between space and ground facilities. In this context, the Sino-French mission <i>SVOM</i> has been designed to combine a space and a ground segment and to make the most of their synergy. On the ground, the 1.3 meter robotic telescope COLIBRI, jointly developed by France and Mexico, will quickly point the sources detected by the space hard X-ray imager ECLAIRs, in order to detect and localise their visible/NIR counterpart and alert large telescopes in minutes. COLIBRI is equipped with two visible cameras, called DDRAGO-blue and DDRAGO-red, and an infrared camera, called CAGIRE, designed for the study of high redshift GRBs candidates. Being a low-noise NIR camera mounted at the focus of an alt-azimutal robotic telescope imposes specific requirements on CAGIRE. We describe here the main characteristics of the camera: its optical, mechanical and electronics architecture, the ALFA detector, and the operation of the camera on the telescope. The instrument description is completed by three sections presenting the calibration strategy, an image simulator incorporating known detector effects, and the automatic reduction software for the ramps acquired by the detector. This paper aims at providing an overview of the instrument before its installation on the telescope.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 2-3","pages":"645 - 685"},"PeriodicalIF":2.7000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-023-09903-x","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The use of high energy transients such as Gamma Ray Bursts (GRBs) as probes of the distant universe relies on the close collaboration between space and ground facilities. In this context, the Sino-French mission SVOM has been designed to combine a space and a ground segment and to make the most of their synergy. On the ground, the 1.3 meter robotic telescope COLIBRI, jointly developed by France and Mexico, will quickly point the sources detected by the space hard X-ray imager ECLAIRs, in order to detect and localise their visible/NIR counterpart and alert large telescopes in minutes. COLIBRI is equipped with two visible cameras, called DDRAGO-blue and DDRAGO-red, and an infrared camera, called CAGIRE, designed for the study of high redshift GRBs candidates. Being a low-noise NIR camera mounted at the focus of an alt-azimutal robotic telescope imposes specific requirements on CAGIRE. We describe here the main characteristics of the camera: its optical, mechanical and electronics architecture, the ALFA detector, and the operation of the camera on the telescope. The instrument description is completed by three sections presenting the calibration strategy, an image simulator incorporating known detector effects, and the automatic reduction software for the ramps acquired by the detector. This paper aims at providing an overview of the instrument before its installation on the telescope.
期刊介绍:
Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments.
Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields.
Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.