Online learning of inverse dynamics via Gaussian Process Regression

J. Cruz, W. Owen, D. Kulić
{"title":"Online learning of inverse dynamics via Gaussian Process Regression","authors":"J. Cruz, W. Owen, D. Kulić","doi":"10.1109/IROS.2012.6385817","DOIUrl":null,"url":null,"abstract":"Model-based control strategies for robot manipulators can present numerous performance advantages when an accurate model of the system dynamics is available. In practice, obtaining such a model is a challenging task which involves modeling such physical processes as friction, which may not be well understood and difficult to model. This paper proposes an approach for online learning of the inverse dynamics model using Gaussian Process Regression. The Sparse Online Gaussian Process (SOGP) algorithm is modified to allow for incremental updates of the model and hyperparameters. The influence of initialization on the performance of the learning algorithms, based on any a-priori knowledge available, is also investigated. The proposed approach is compared to existing learning and fixed control algorithms and shown to be capable of fast initialization and learning rate.","PeriodicalId":6358,"journal":{"name":"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"335 1","pages":"3583-3590"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2012.6385817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Model-based control strategies for robot manipulators can present numerous performance advantages when an accurate model of the system dynamics is available. In practice, obtaining such a model is a challenging task which involves modeling such physical processes as friction, which may not be well understood and difficult to model. This paper proposes an approach for online learning of the inverse dynamics model using Gaussian Process Regression. The Sparse Online Gaussian Process (SOGP) algorithm is modified to allow for incremental updates of the model and hyperparameters. The influence of initialization on the performance of the learning algorithms, based on any a-priori knowledge available, is also investigated. The proposed approach is compared to existing learning and fixed control algorithms and shown to be capable of fast initialization and learning rate.
通过高斯过程回归在线学习逆动力学
当一个精确的系统动力学模型可用时,基于模型的机器人操纵器控制策略可以呈现出许多性能优势。在实践中,获得这样的模型是一项具有挑战性的任务,它涉及到对摩擦等物理过程的建模,这些物理过程可能不被很好地理解并且难以建模。本文提出了一种利用高斯过程回归对逆动力学模型进行在线学习的方法。改进了稀疏在线高斯过程(SOGP)算法,允许模型和超参数的增量更新。研究了初始化对基于任意先验知识的学习算法性能的影响。与现有的学习和固定控制算法进行了比较,结果表明该方法具有快速初始化和快速学习率的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信