Formal Verification of Integer Dividers:Division by a Constant

Atif Yasin, Tiankai Su, S. Pillement, M. Ciesielski
{"title":"Formal Verification of Integer Dividers:Division by a Constant","authors":"Atif Yasin, Tiankai Su, S. Pillement, M. Ciesielski","doi":"10.1109/ISVLSI.2019.00022","DOIUrl":null,"url":null,"abstract":"Division is one of the most complex and hard to verify arithmetic operations. While verification of major arithmetic operators, such as adders and multipliers, has significantly progressed in recent years, less attention has been devoted to formal verification of dividers. A type of divider that is often used in embedded systems is divide by a constant. This paper presents a formal verification method for different divide-by-constant architectures and the generic restoring dividers based on the computer algebra approach. Our experiments for different divider architectures and comparison with exhaustive simulation demonstrates the effectiveness and scalability of the method.","PeriodicalId":6703,"journal":{"name":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"23 1","pages":"76-81"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2019.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Division is one of the most complex and hard to verify arithmetic operations. While verification of major arithmetic operators, such as adders and multipliers, has significantly progressed in recent years, less attention has been devoted to formal verification of dividers. A type of divider that is often used in embedded systems is divide by a constant. This paper presents a formal verification method for different divide-by-constant architectures and the generic restoring dividers based on the computer algebra approach. Our experiments for different divider architectures and comparison with exhaustive simulation demonstrates the effectiveness and scalability of the method.
整数除法的形式化验证:被常数除法
除法是最复杂、最难验证的算术运算之一。虽然近年来对加法器和乘法器等主要算术运算符的验证取得了重大进展,但对除法的正式验证的关注却很少。在嵌入式系统中经常使用的一种除法是除以一个常数。本文提出了一种基于计算机代数方法的不同常除法体系结构的形式化验证方法和通用的恢复除法。我们对不同的分频器结构进行了实验,并与穷举仿真进行了比较,证明了该方法的有效性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信