A Low-drift Extended-Gate Field Effect Transistor (EGFET) with Differential Amplifier for Cordyceps Sinensis DNA Detection Optimized by gm/ID Theory

Yifan Xu, Hadi Tavakkoli, Jingting Xu, Yi-Kuen Lee
{"title":"A Low-drift Extended-Gate Field Effect Transistor (EGFET) with Differential Amplifier for Cordyceps Sinensis DNA Detection Optimized by gm/ID Theory","authors":"Yifan Xu, Hadi Tavakkoli, Jingting Xu, Yi-Kuen Lee","doi":"10.1109/NEMS50311.2020.9265621","DOIUrl":null,"url":null,"abstract":"An extended-gate field effect transistor (EGFET) integrated with a differential MOSFET amplifier and an open-source Arduino Yun MCU system was realized for detection of Cordyceps Sinensis DNA molecules. A gold microelectrode chip coated with a single-stranded DNA probe, as the extended gate was fabricated by MEMS fabrication processes. The differential MOSFET amplifier and additional coating of alkyl-thiol reduced the drifting by one order of magnitude. Moreover, generalized gm/ID theory was used to study the optimized working regime of the EGFET sensor. The highest electric-electrochemical sensitivity could be achieved in the Moderate Inversion (MI) regime. The sensitivity and limit of detection (LOD) of the EGFET sensor were obtained to be 13.85mV/dec and 10nM, respectively. This low-cost low-drift EGFET sensor system is promising for Internet of Living Things in the near future.","PeriodicalId":6787,"journal":{"name":"2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS)","volume":"23 1","pages":"398-401"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS50311.2020.9265621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An extended-gate field effect transistor (EGFET) integrated with a differential MOSFET amplifier and an open-source Arduino Yun MCU system was realized for detection of Cordyceps Sinensis DNA molecules. A gold microelectrode chip coated with a single-stranded DNA probe, as the extended gate was fabricated by MEMS fabrication processes. The differential MOSFET amplifier and additional coating of alkyl-thiol reduced the drifting by one order of magnitude. Moreover, generalized gm/ID theory was used to study the optimized working regime of the EGFET sensor. The highest electric-electrochemical sensitivity could be achieved in the Moderate Inversion (MI) regime. The sensitivity and limit of detection (LOD) of the EGFET sensor were obtained to be 13.85mV/dec and 10nM, respectively. This low-cost low-drift EGFET sensor system is promising for Internet of Living Things in the near future.
基于gm/ID理论优化的低漂移扩展门场效应晶体管(EGFET)用于冬虫夏草DNA检测
实现了一种集成差分MOSFET放大器和开源Arduino Yun单片机系统的扩展门场效应晶体管(EGFET)用于冬虫夏草DNA分子检测。采用MEMS工艺制备了包覆单链DNA探针的金微电极芯片,作为扩展栅。差动MOSFET放大器和附加的烷基硫醇涂层使漂移降低了一个数量级。此外,利用广义gm/ID理论研究了EGFET传感器的优化工作状态。在中等转化(MI)状态下,电化学灵敏度最高。EGFET传感器的灵敏度为13.85mV/dec,检测限为10nM。这种低成本、低漂移的EGFET传感器系统在不久的将来有望应用于物联网。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信