{"title":"Impact of Temperature on Upper Respiratory Tract Infections in Lanzhou Based on the Distributed Lag Model","authors":"Guangyu Zhai, Kuan Zhang, G. Chai","doi":"10.32604/MCB.2021.014287","DOIUrl":null,"url":null,"abstract":"The study mainly analyzed the relationship between temperature and the upper respiratory tract infections (URI) in Lanzhou. We collected the daily URI and meteorological data from 2010 to 2015. A distributed lag non-linear model was used to examine the relationship and potential effects of different temperatures and different lag days on the morbidity of URI. The results showed that the morbidity of URI was significantly related to the meteorological factors, and the peak of the onset of the disease usually occurred between November and February the next year. The correlation analysis was carried out between meteorological factors and URI cases, and the result revealed that the daily morbidity of URI in Lanzhou was related to air temperature, air pressure, and wind speed. The exposure effect curve of average daily temperature to different sex and different age groups in Lanzhou displayed an M-shaped. Temperature had a certain lag effect on the daily morbidity of URI. For low temperature, it appeared on the present day, and the maximum impact appeared at lag 2 days and persisted for 12 days. The female was more vulnerable than the male, and the impact was obvious in teenagers and the elderly and not obvious in adult. Meteorological factors play an important role in the occurrence of URI in Lanzhou, but the main factor is low temperature. Temperature can trigger the morbidity of URI directly; it can induce various symptoms of URI (such as cold, sore throat and rhinitis) and directly affect the distribution of URI in the population.","PeriodicalId":48719,"journal":{"name":"Molecular & Cellular Biomechanics","volume":"9 4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Biomechanics","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.32604/MCB.2021.014287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
The study mainly analyzed the relationship between temperature and the upper respiratory tract infections (URI) in Lanzhou. We collected the daily URI and meteorological data from 2010 to 2015. A distributed lag non-linear model was used to examine the relationship and potential effects of different temperatures and different lag days on the morbidity of URI. The results showed that the morbidity of URI was significantly related to the meteorological factors, and the peak of the onset of the disease usually occurred between November and February the next year. The correlation analysis was carried out between meteorological factors and URI cases, and the result revealed that the daily morbidity of URI in Lanzhou was related to air temperature, air pressure, and wind speed. The exposure effect curve of average daily temperature to different sex and different age groups in Lanzhou displayed an M-shaped. Temperature had a certain lag effect on the daily morbidity of URI. For low temperature, it appeared on the present day, and the maximum impact appeared at lag 2 days and persisted for 12 days. The female was more vulnerable than the male, and the impact was obvious in teenagers and the elderly and not obvious in adult. Meteorological factors play an important role in the occurrence of URI in Lanzhou, but the main factor is low temperature. Temperature can trigger the morbidity of URI directly; it can induce various symptoms of URI (such as cold, sore throat and rhinitis) and directly affect the distribution of URI in the population.
期刊介绍:
The field of biomechanics concerns with motion, deformation, and forces in biological systems. With the explosive progress in molecular biology, genomic engineering, bioimaging, and nanotechnology, there will be an ever-increasing generation of knowledge and information concerning the mechanobiology of genes, proteins, cells, tissues, and organs. Such information will bring new diagnostic tools, new therapeutic approaches, and new knowledge on ourselves and our interactions with our environment. It becomes apparent that biomechanics focusing on molecules, cells as well as tissues and organs is an important aspect of modern biomedical sciences. The aims of this journal are to facilitate the studies of the mechanics of biomolecules (including proteins, genes, cytoskeletons, etc.), cells (and their interactions with extracellular matrix), tissues and organs, the development of relevant advanced mathematical methods, and the discovery of biological secrets. As science concerns only with relative truth, we seek ideas that are state-of-the-art, which may be controversial, but stimulate and promote new ideas, new techniques, and new applications.