Direct visual SLAM fusing proprioception for a humanoid robot

Raluca Scona, S. Nobili, Y. Pétillot, M. Fallon
{"title":"Direct visual SLAM fusing proprioception for a humanoid robot","authors":"Raluca Scona, S. Nobili, Y. Pétillot, M. Fallon","doi":"10.1109/IROS.2017.8205943","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the application of semi-dense visual Simultaneous Localisation and Mapping (SLAM) to the humanoid robotics domain. Challenges of visual SLAM applied to humanoids include the type of dynamic motion executed by the robot, a lack of features in man-made environments and the presence of dynamics in the scene. Previous research on humanoid SLAM focused mostly on feature-based methods which result in sparse environment reconstructions. Instead, we investigate the application of a modern direct method to obtain a semi-dense visually interpretable map which can be used for collision free motion planning. We tackle the challenge of using direct visual SLAM on a humanoid by proposing a more robust pose tracking method. This is formulated as an optimisation problem over a cost function which combines information from the stereo camera and a low-drift kinematic-inertial motion prior. Extensive experimental demonstrations characterise the performance of our method using the NASA Valkyrie humanoid robot in a laboratory environment equipped with a Vicon motion capture system. Our experiments demonstrate pose tracking robustness to challenges such as sudden view change, motion blur in the image, change in illumination and tracking through sequences of featureless areas in the environment. Finally, we provide a qualitative evaluation of our stereo reconstruction against a LIDAR map.","PeriodicalId":6658,"journal":{"name":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"13 1","pages":"1419-1426"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2017.8205943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

In this paper we investigate the application of semi-dense visual Simultaneous Localisation and Mapping (SLAM) to the humanoid robotics domain. Challenges of visual SLAM applied to humanoids include the type of dynamic motion executed by the robot, a lack of features in man-made environments and the presence of dynamics in the scene. Previous research on humanoid SLAM focused mostly on feature-based methods which result in sparse environment reconstructions. Instead, we investigate the application of a modern direct method to obtain a semi-dense visually interpretable map which can be used for collision free motion planning. We tackle the challenge of using direct visual SLAM on a humanoid by proposing a more robust pose tracking method. This is formulated as an optimisation problem over a cost function which combines information from the stereo camera and a low-drift kinematic-inertial motion prior. Extensive experimental demonstrations characterise the performance of our method using the NASA Valkyrie humanoid robot in a laboratory environment equipped with a Vicon motion capture system. Our experiments demonstrate pose tracking robustness to challenges such as sudden view change, motion blur in the image, change in illumination and tracking through sequences of featureless areas in the environment. Finally, we provide a qualitative evaluation of our stereo reconstruction against a LIDAR map.
仿人机器人本体感觉的直接视觉SLAM融合
本文研究了半密集视觉同步定位与映射(SLAM)在仿人机器人领域的应用。将视觉SLAM应用于类人机器人的挑战包括机器人执行的动态运动类型、人工环境中缺乏特征以及场景中存在动态。以往对仿人SLAM的研究主要集中在基于特征的方法上,这些方法导致了稀疏的环境重构。相反,我们研究了一种现代直接方法的应用,以获得可用于无碰撞运动规划的半密集视觉可解释地图。我们通过提出一种更鲁棒的姿态跟踪方法来解决在人形机器人上使用直接视觉SLAM的挑战。这被表述为一个成本函数的优化问题,该函数结合了来自立体摄像机和低漂移运动学-惯性运动先验的信息。广泛的实验演示描述了我们的方法在配备Vicon运动捕捉系统的实验室环境中使用NASA Valkyrie人形机器人的性能。我们的实验证明了姿态跟踪对诸如突然的视角变化、图像中的运动模糊、照明变化和通过环境中无特征区域序列的跟踪等挑战的鲁棒性。最后,我们针对激光雷达地图提供了立体重建的定性评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信