G. Sisto, B. Chehab, B. Genneret, R. Baert, R. Chen, P. Weckx, J. Ryckaert, R. Chou, G. van der Plas, E. Beyne, D. Milojevic
{"title":"IR-Drop Analysis of Hybrid Bonded 3D-ICs with Backside Power Delivery and μ- & n- TSVs","authors":"G. Sisto, B. Chehab, B. Genneret, R. Baert, R. Chen, P. Weckx, J. Ryckaert, R. Chou, G. van der Plas, E. Beyne, D. Milojevic","doi":"10.1109/IITC51362.2021.9537541","DOIUrl":null,"url":null,"abstract":"We present an IR-drop analysis of hybrid bonded 3D-ICs Power Delivery Network with backside metals and buried power rail. Two different options for the backside to frontside connectivity are included: μTSVs and nTSVs (respectively 0.5μm, 0.09μm diameter and 1Ω, 10Ω nominal resistance). Further, Hybrid Bonding CuPads are used to deliver power to the second die in the stack. A commercial power analysis tool is extended to support both the TSV and the pads structures, to tackle both inter-die and on-die power delivery challenges. A L1 cache memory implemented on the top of a core is used as test case to assess the performance of the proposed metal stack. A 69% reduction in average static IR-drop is observed with the BS-PDN compared to the conventional frontside. Further, 81% and 77% average and peak IR-drop reductions are obtained with nTSV compared to μTSV.","PeriodicalId":6823,"journal":{"name":"2021 IEEE International Interconnect Technology Conference (IITC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Interconnect Technology Conference (IITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC51362.2021.9537541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
We present an IR-drop analysis of hybrid bonded 3D-ICs Power Delivery Network with backside metals and buried power rail. Two different options for the backside to frontside connectivity are included: μTSVs and nTSVs (respectively 0.5μm, 0.09μm diameter and 1Ω, 10Ω nominal resistance). Further, Hybrid Bonding CuPads are used to deliver power to the second die in the stack. A commercial power analysis tool is extended to support both the TSV and the pads structures, to tackle both inter-die and on-die power delivery challenges. A L1 cache memory implemented on the top of a core is used as test case to assess the performance of the proposed metal stack. A 69% reduction in average static IR-drop is observed with the BS-PDN compared to the conventional frontside. Further, 81% and 77% average and peak IR-drop reductions are obtained with nTSV compared to μTSV.