An information visualization approach to improving data quality

A. Baer
{"title":"An information visualization approach to improving data quality","authors":"A. Baer","doi":"10.3402/EHTJ.V4I0.11014","DOIUrl":null,"url":null,"abstract":"Introduction The Public Health*Seattle & King County (PHSKC) syndromic surveillance system has been collecting emergency department (ED) data since 1999. These data include hospital name, age, sex, zip code, chief complaint, diagnoses (when available), disposition and a patient and visit key. Data are collected for 19 of 20 King County EDs, for visits that occurred the previous day. Over time, various problems with data quality have been encountered, including data drop-offs, missing data elements, incorrect values of fields, duplication of data, data delays and unexpected changes in files received from hospitals. In spite of close monitoring of the data as part of our routine syndromic surveillance activities, there have occasionally been delays in identifying these problems. Since the validity of syndromic surveillance is dependent on data quality, we sought to develop a visualization to help monitor data quality over time, in order to improve the timeliness of addressing data quality problems.","PeriodicalId":72898,"journal":{"name":"Emerging health threats journal","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging health threats journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3402/EHTJ.V4I0.11014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Introduction The Public Health*Seattle & King County (PHSKC) syndromic surveillance system has been collecting emergency department (ED) data since 1999. These data include hospital name, age, sex, zip code, chief complaint, diagnoses (when available), disposition and a patient and visit key. Data are collected for 19 of 20 King County EDs, for visits that occurred the previous day. Over time, various problems with data quality have been encountered, including data drop-offs, missing data elements, incorrect values of fields, duplication of data, data delays and unexpected changes in files received from hospitals. In spite of close monitoring of the data as part of our routine syndromic surveillance activities, there have occasionally been delays in identifying these problems. Since the validity of syndromic surveillance is dependent on data quality, we sought to develop a visualization to help monitor data quality over time, in order to improve the timeliness of addressing data quality problems.
一种提高数据质量的信息可视化方法
公共卫生*西雅图和金县(PHSKC)综合征监测系统自1999年以来一直在收集急诊科(ED)数据。这些数据包括医院名称、年龄、性别、邮政编码、主诉、诊断(如果有的话)、性格、病人和就诊钥匙。收集了金县20个急诊室中19个前一天就诊的数据。随着时间的推移,遇到了各种数据质量问题,包括数据丢失、数据元素缺失、字段值不正确、数据重复、数据延迟以及从医院收到的文件出现意外更改。尽管作为我们日常综合征监测活动的一部分对数据进行了密切监测,但在确定这些问题方面偶尔会出现延误。由于综合征监测的有效性取决于数据质量,我们试图开发一种可视化方法来帮助监测数据质量,以提高解决数据质量问题的及时性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信