Peramalan Jumlah Penumpang Kereta Api di Indonesia dengan Resilient Back-Propagation (Rprop) Neural Network

Mertha Endah Ervina, Rini Silvi, Intaniah Ratna Nur Wisisono
{"title":"Peramalan Jumlah Penumpang Kereta Api di Indonesia dengan Resilient Back-Propagation (Rprop) Neural Network","authors":"Mertha Endah Ervina, Rini Silvi, Intaniah Ratna Nur Wisisono","doi":"10.15642/MANTIK.2018.4.2.90-99","DOIUrl":null,"url":null,"abstract":"Train scheduling affects the level of customer satisfaction and profitability of the train service provider. The prediction method of Back-propagation Neural Network (BPNN) has relatively slow convergence. Therefore, this study uses Resilient Back-propagation (Rprop) because it has a more fast convergence and high accuracy. The model produced is a model for Jabodetabek, Java (non-Jabodetabek), Sumatra, and Indonesia. From the results of data analysis conducted, it can be concluded that the performance of neural network model with Resilient Back-propagation (Rprop) formed from training data gives very accurate prediction accuracy level with mean absolute percentage error (MAPE) less than 10% for each model. Then forecasting for the next 12 months conducted and the results compared with the data testing, Rprop provides a very high forecasting accuracy with MAPE value below 10%. The MAPE value for each forecasting the number of rail passengers is 7.50% for Jabodetabek, 5.89% for Java (non-Jabodetabek), 5.36% for Sumatra and 4.80% for Indonesia. That is, four neural network architectures with Rprop can be used for this case with very accurate forecasting results.","PeriodicalId":32704,"journal":{"name":"Mantik Jurnal Matematika","volume":"8 2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mantik Jurnal Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15642/MANTIK.2018.4.2.90-99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Train scheduling affects the level of customer satisfaction and profitability of the train service provider. The prediction method of Back-propagation Neural Network (BPNN) has relatively slow convergence. Therefore, this study uses Resilient Back-propagation (Rprop) because it has a more fast convergence and high accuracy. The model produced is a model for Jabodetabek, Java (non-Jabodetabek), Sumatra, and Indonesia. From the results of data analysis conducted, it can be concluded that the performance of neural network model with Resilient Back-propagation (Rprop) formed from training data gives very accurate prediction accuracy level with mean absolute percentage error (MAPE) less than 10% for each model. Then forecasting for the next 12 months conducted and the results compared with the data testing, Rprop provides a very high forecasting accuracy with MAPE value below 10%. The MAPE value for each forecasting the number of rail passengers is 7.50% for Jabodetabek, 5.89% for Java (non-Jabodetabek), 5.36% for Sumatra and 4.80% for Indonesia. That is, four neural network architectures with Rprop can be used for this case with very accurate forecasting results.
列车调度影响着旅客满意度和列车服务提供商的盈利能力。反向传播神经网络(BPNN)的预测方法收敛速度相对较慢。因此,本研究采用弹性反向传播(Resilient Back-propagation, Rprop),因为它具有更快的收敛速度和更高的精度。生成的模型是Jabodetabek、Java(非Jabodetabek)、苏门答腊和印度尼西亚的模型。从数据分析的结果可以看出,由训练数据形成的具有弹性反向传播(Resilient Back-propagation, Rprop)的神经网络模型的性能给出了非常准确的预测精度水平,每个模型的平均绝对百分比误差(MAPE)小于10%。然后对未来12个月进行预测,并与数据测试结果进行比较,Rprop提供了非常高的预测精度,MAPE值在10%以下。每个预测铁路乘客数量的MAPE值为Jabodetabek的7.50%,爪哇(非Jabodetabek)的5.89%,苏门答腊的5.36%和印度尼西亚的4.80%。也就是说,在这种情况下,可以使用带有Rprop的四种神经网络体系结构,并获得非常准确的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
10
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信