On epireflective subcategories of topological categories

Th. Marny
{"title":"On epireflective subcategories of topological categories","authors":"Th. Marny","doi":"10.1016/0016-660X(79)90006-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper the lattice of all epireflective subcategories of a topological category is studied by defining the <em>T</em><sub>0</sub>-objects of a topological category. A topological category is called universal iff it is the bireflective hull of its <em>T</em><sub>0</sub>-objects. Topological spaces, uniform spaces, and nearness spaces form universal categories. The lattice of all epireflective subcategories of a universal topological category splits into two isomorphic sublattices. Some relations and consequences of this fact with respect to cartesian closedness and simplicity of epireflective subcategories are obtained.</p></div>","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"10 2","pages":"Pages 175-181"},"PeriodicalIF":0.0000,"publicationDate":"1979-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0016-660X(79)90006-0","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Topology and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0016660X79900060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

Abstract

In this paper the lattice of all epireflective subcategories of a topological category is studied by defining the T0-objects of a topological category. A topological category is called universal iff it is the bireflective hull of its T0-objects. Topological spaces, uniform spaces, and nearness spaces form universal categories. The lattice of all epireflective subcategories of a universal topological category splits into two isomorphic sublattices. Some relations and consequences of this fact with respect to cartesian closedness and simplicity of epireflective subcategories are obtained.

论拓扑范畴的表反射子范畴
本文通过定义拓扑范畴的t0对象,研究了拓扑范畴的所有反射子范畴的格。如果拓扑范畴是其0个对象的双反射外壳,则称为全称范畴。拓扑空间、一致空间和接近空间构成了全称范畴。全称拓扑范畴的所有外反射子范畴的格分裂为两个同构子格。得到了这一事实关于外反射子范畴的笛卡尔封闭性和简单性的一些关系和结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信