{"title":"FDTD-SUPML simulation of photonic integrated circuits","authors":"Hai Lin, R. Dou, Gaofeng Wang, Bing-Zhong Wang","doi":"10.1109/ISEMC.2005.1513566","DOIUrl":null,"url":null,"abstract":"Accurate modeling of photonic integrated circuits (PIC) is essential for development of high performance optical components. In this work, a finite difference time domain method (FDTD), combined with a simplified uniaxial perfectly matched layer boundary condition is presented to efficiently analyze light propagation in PIC. The FDTD-SUPML formulation can be easily applied to complex optical components. Numerical examples illustrate that this combined approach gives high accuracy.","PeriodicalId":6459,"journal":{"name":"2005 International Symposium on Electromagnetic Compatibility, 2005. EMC 2005.","volume":"19 1","pages":"501-504 Vol. 2"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Symposium on Electromagnetic Compatibility, 2005. EMC 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEMC.2005.1513566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Accurate modeling of photonic integrated circuits (PIC) is essential for development of high performance optical components. In this work, a finite difference time domain method (FDTD), combined with a simplified uniaxial perfectly matched layer boundary condition is presented to efficiently analyze light propagation in PIC. The FDTD-SUPML formulation can be easily applied to complex optical components. Numerical examples illustrate that this combined approach gives high accuracy.