Meutia Diva Hakim, Noriko Yamano- Adachi, T. Omasa, M. Tan, L. D. Juliawaty, E. Giri-Rachman
{"title":"Synthesis of Human Antibodies Against HBsAg in Newly Established Chinese Hamster Lung (CHL-YN) Cell Line","authors":"Meutia Diva Hakim, Noriko Yamano- Adachi, T. Omasa, M. Tan, L. D. Juliawaty, E. Giri-Rachman","doi":"10.5614/j.math.fund.sci.2022.54.3.1","DOIUrl":null,"url":null,"abstract":"Hepatitis B immunoglobulin (HBIG) is an effective treatment for hepatitis B, including postexposure prophylaxis of HBV infection, prevention of HBV reinfection in liver transplant patients, and reducing sexual transmission. This study investigated the synthesis of human IgG antibodies that specifically target HBsAg subtype adr in CHL-YN cells, a newly established cell line that grows faster than CHO-K1. To achieve the synthesis of human IgG antibodies, a plasmid vector encoding DNA sequences for human IgG antibodies against HBsAg was constructed and then transiently transfected into CHL-YN cells. The expression and antigen-binding capacity of the recombinant human IgG antibodies were analyzed using western blot and ELISA. The results showed successful expression and secretion of human IgG antibodies that recognize HBsAg subtype adr in CHL-YN cells. The ELISA test confirmed the specificity of the human IgG antibodies towards HBsAg subtype adr. Thus, this study concluded that human IgG antibodies that target HBsAg subtype adr were transiently expressed in CHL-YN cells.","PeriodicalId":16255,"journal":{"name":"Journal of Mathematical and Fundamental Sciences","volume":"34 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical and Fundamental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/j.math.fund.sci.2022.54.3.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatitis B immunoglobulin (HBIG) is an effective treatment for hepatitis B, including postexposure prophylaxis of HBV infection, prevention of HBV reinfection in liver transplant patients, and reducing sexual transmission. This study investigated the synthesis of human IgG antibodies that specifically target HBsAg subtype adr in CHL-YN cells, a newly established cell line that grows faster than CHO-K1. To achieve the synthesis of human IgG antibodies, a plasmid vector encoding DNA sequences for human IgG antibodies against HBsAg was constructed and then transiently transfected into CHL-YN cells. The expression and antigen-binding capacity of the recombinant human IgG antibodies were analyzed using western blot and ELISA. The results showed successful expression and secretion of human IgG antibodies that recognize HBsAg subtype adr in CHL-YN cells. The ELISA test confirmed the specificity of the human IgG antibodies towards HBsAg subtype adr. Thus, this study concluded that human IgG antibodies that target HBsAg subtype adr were transiently expressed in CHL-YN cells.
期刊介绍:
Journal of Mathematical and Fundamental Sciences welcomes full research articles in the area of Mathematics and Natural Sciences from the following subject areas: Astronomy, Chemistry, Earth Sciences (Geodesy, Geology, Geophysics, Oceanography, Meteorology), Life Sciences (Agriculture, Biochemistry, Biology, Health Sciences, Medical Sciences, Pharmacy), Mathematics, Physics, and Statistics. New submissions of mathematics articles starting in January 2020 are required to focus on applied mathematics with real relevance to the field of natural sciences. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.