Seismic microzoning of the Delhi metropolitan area, India—II: Hazard computation and zoning maps

IF 1.9
Ishwer Datt Gupta, Vincent W. Lee, Mihailo D. Trifunac
{"title":"Seismic microzoning of the Delhi metropolitan area, India—II: Hazard computation and zoning maps","authors":"Ishwer Datt Gupta,&nbsp;Vincent W. Lee,&nbsp;Mihailo D. Trifunac","doi":"10.1002/eer2.15","DOIUrl":null,"url":null,"abstract":"<p>We present seismic microzonation maps of New Delhi, India, using the probabilistic seismic hazard analysis (PSHA) method with input seismic activity parameters estimated in Part-I of this two-part paper. Our calculations required three different attenuation equations for amplitude scaling of strong ground motion from three principal contributing sources: the National Capital Region (NCR), Northwestern Himalaya (NWH), and the Hindu Kush subduction (HKS). We show that uniform hazard spectral (UHS) amplitudes are dominated only by the local seismicity in the NCR at high frequencies beyond about 2 Hz. For intermediate and long periods, UHS amplitudes are dominated by contributions from the NWH and HKS earthquakes. Our results show that specifying strong motion amplitudes for use in engineering design by means of peak ground acceleration can lead to serious errors for buildings higher than four to five stories and hence should not be used. Our results also show that the shape of design spectra must depend on the nature of contributing earthquake sources, their relative activity, potential to create large magnitudes, and geographical placement relative to the site of interest, and thus a standard design-spectrum shape cannot satisfy all these requirements. We use local geological site condition parameters directly in all calculations and present hazard maps for three different soil site conditions (“rock,” stiff soil sites, and deep soil sites). Thus, the user can extract the UHS amplitudes of pseudo relative velocity spectra at any site in the National Capital Territory by experimentally determining the local soil site conditions and then applying the corresponding maps shown in this paper.</p>","PeriodicalId":100383,"journal":{"name":"Earthquake Engineering and Resilience","volume":"1 2","pages":"138-163"},"PeriodicalIF":1.9000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eer2.15","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering and Resilience","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eer2.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present seismic microzonation maps of New Delhi, India, using the probabilistic seismic hazard analysis (PSHA) method with input seismic activity parameters estimated in Part-I of this two-part paper. Our calculations required three different attenuation equations for amplitude scaling of strong ground motion from three principal contributing sources: the National Capital Region (NCR), Northwestern Himalaya (NWH), and the Hindu Kush subduction (HKS). We show that uniform hazard spectral (UHS) amplitudes are dominated only by the local seismicity in the NCR at high frequencies beyond about 2 Hz. For intermediate and long periods, UHS amplitudes are dominated by contributions from the NWH and HKS earthquakes. Our results show that specifying strong motion amplitudes for use in engineering design by means of peak ground acceleration can lead to serious errors for buildings higher than four to five stories and hence should not be used. Our results also show that the shape of design spectra must depend on the nature of contributing earthquake sources, their relative activity, potential to create large magnitudes, and geographical placement relative to the site of interest, and thus a standard design-spectrum shape cannot satisfy all these requirements. We use local geological site condition parameters directly in all calculations and present hazard maps for three different soil site conditions (“rock,” stiff soil sites, and deep soil sites). Thus, the user can extract the UHS amplitudes of pseudo relative velocity spectra at any site in the National Capital Territory by experimentally determining the local soil site conditions and then applying the corresponding maps shown in this paper.

Abstract Image

印度德里大都市区的地震微分区ii:危险计算和分区图
本文采用概率地震危险性分析(PSHA)方法绘制了印度新德里的地震微带图,并在本文第一部分中估计了输入地震活动参数。我们的计算需要三种不同的强地面运动振幅标度衰减方程,它们分别来自三个主要震源:国家首都地区(NCR)、西北喜马拉雅地区(NWH)和兴都库什俯冲带(HKS)。我们发现,均匀危险谱(UHS)振幅仅受NCR中超过约2hz的高频局部地震活动的支配。在中期和长周期内,超高压振幅主要由北西太平洋地震和香港地震贡献。我们的研究结果表明,通过峰值地面加速度来指定用于工程设计的强运动幅值可能会导致四到五层以上建筑的严重误差,因此不应该使用。我们的研究结果还表明,设计谱的形状必须取决于贡献震源的性质、它们的相对活动性、产生大震级的潜力以及相对于感兴趣的地点的地理位置,因此标准的设计谱形状不能满足所有这些要求。我们在所有计算中直接使用当地地质场地条件参数,并为三种不同的土壤场地条件(“岩石”、硬土场地和深土场地)提供危险图。因此,用户可以通过实验确定当地土壤条件,然后应用本文所示的相应地图,在国家首都地区的任何站点提取伪相对速度谱的UHS振幅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信