Richard Carney, M. Chyba, Chris Gray, Corey Shanbrom, G. Wilkens
{"title":"Multi-agent systems for quadcopters","authors":"Richard Carney, M. Chyba, Chris Gray, Corey Shanbrom, G. Wilkens","doi":"10.3934/jgm.2021005","DOIUrl":null,"url":null,"abstract":"Unmanned Aerial Vehicles (UAVs) have been increasingly used in the context of remote sensing missions such as target search and tracking, mapping, or surveillance monitoring. In the first part of our paper we consider agent dynamics, network topologies, and collective behaviors. The objective is to enable multiple UAVs to collaborate toward a common goal, as one would find in a remote sensing setting. An agreement protocol is carried out by the multi-agents using local information, and without external user input. The second part of the paper focuses on the equations of motion for a specific type of UAV, the quadcopter, and expresses them as an affine nonlinear control system. Finally, we illustrate our work with a simulation of an agreement protocol for dynamically sound quadcopters augmenting the particle graph theoretic approach with orientation and a proper dynamics for quadcopters.","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":"12 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Mechanics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jgm.2021005","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Unmanned Aerial Vehicles (UAVs) have been increasingly used in the context of remote sensing missions such as target search and tracking, mapping, or surveillance monitoring. In the first part of our paper we consider agent dynamics, network topologies, and collective behaviors. The objective is to enable multiple UAVs to collaborate toward a common goal, as one would find in a remote sensing setting. An agreement protocol is carried out by the multi-agents using local information, and without external user input. The second part of the paper focuses on the equations of motion for a specific type of UAV, the quadcopter, and expresses them as an affine nonlinear control system. Finally, we illustrate our work with a simulation of an agreement protocol for dynamically sound quadcopters augmenting the particle graph theoretic approach with orientation and a proper dynamics for quadcopters.
期刊介绍:
The Journal of Geometric Mechanics (JGM) aims to publish research articles devoted to geometric methods (in a broad sense) in mechanics and control theory, and intends to facilitate interaction between theory and applications. Advances in the following topics are welcomed by the journal:
1. Lagrangian and Hamiltonian mechanics
2. Symplectic and Poisson geometry and their applications to mechanics
3. Geometric and optimal control theory
4. Geometric and variational integration
5. Geometry of stochastic systems
6. Geometric methods in dynamical systems
7. Continuum mechanics
8. Classical field theory
9. Fluid mechanics
10. Infinite-dimensional dynamical systems
11. Quantum mechanics and quantum information theory
12. Applications in physics, technology, engineering and the biological sciences.