Defocus Blur Segmentation Using Genetic Programming and Adaptive Threshold

IF 2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
M. Tariq Mahmood
{"title":"Defocus Blur Segmentation Using Genetic Programming and Adaptive Threshold","authors":"M. Tariq Mahmood","doi":"10.32604/cmc.2022.019544","DOIUrl":null,"url":null,"abstract":": Detection and classification of the blurred and the non-blurred regions in images is a challenging task due to the limited available information about blur type, scenarios and level of blurriness. In this paper, we propose an effective method for blur detection and segmentation based on transfer learning concept. The proposed method consists of two separate steps. In the first step, genetic programming (GP) model is developed that quantify the amount of blur for each pixel in the image. The GP model method uses the multi-resolution features of the image and it provides an improved blur map. In the second phase, the blur map is segmented into blurred and non-blurred regions by using an adaptive threshold. A model based on support vector machine (SVM) is developed to compute adaptive threshold for the input blur map. The performance of the proposed method is evaluated using two different datasets and compared with various state-of-the-art methods. The comparativeanalysis reveals that the proposed method performs better against the state-of-the-art techniques.","PeriodicalId":10440,"journal":{"name":"Cmc-computers Materials & Continua","volume":"78 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cmc-computers Materials & Continua","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.32604/cmc.2022.019544","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

: Detection and classification of the blurred and the non-blurred regions in images is a challenging task due to the limited available information about blur type, scenarios and level of blurriness. In this paper, we propose an effective method for blur detection and segmentation based on transfer learning concept. The proposed method consists of two separate steps. In the first step, genetic programming (GP) model is developed that quantify the amount of blur for each pixel in the image. The GP model method uses the multi-resolution features of the image and it provides an improved blur map. In the second phase, the blur map is segmented into blurred and non-blurred regions by using an adaptive threshold. A model based on support vector machine (SVM) is developed to compute adaptive threshold for the input blur map. The performance of the proposed method is evaluated using two different datasets and compared with various state-of-the-art methods. The comparativeanalysis reveals that the proposed method performs better against the state-of-the-art techniques.
基于遗传规划和自适应阈值的散焦模糊分割
由于关于模糊类型、场景和模糊程度的可用信息有限,图像中模糊和非模糊区域的检测和分类是一项具有挑战性的任务。在本文中,我们提出了一种基于迁移学习概念的有效模糊检测和分割方法。所提出的方法包括两个独立的步骤。首先,建立遗传规划(GP)模型,量化图像中每个像素的模糊量。GP模型方法利用了图像的多分辨率特征,提供了一种改进的模糊图。在第二阶段,使用自适应阈值将模糊地图分割为模糊和非模糊区域。提出了一种基于支持向量机的模糊图自适应阈值计算模型。使用两个不同的数据集评估了所提出方法的性能,并与各种最先进的方法进行了比较。对比分析表明,所提出的方法相对于最先进的技术具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cmc-computers Materials & Continua
Cmc-computers Materials & Continua 工程技术-材料科学:综合
CiteScore
5.30
自引率
19.40%
发文量
345
审稿时长
1 months
期刊介绍: This journal publishes original research papers in the areas of computer networks, artificial intelligence, big data management, software engineering, multimedia, cyber security, internet of things, materials genome, integrated materials science, data analysis, modeling, and engineering of designing and manufacturing of modern functional and multifunctional materials. Novel high performance computing methods, big data analysis, and artificial intelligence that advance material technologies are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信