An embedded intelligence engine for driver drowsiness detection

IF 1.1 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Shirisha Vadlamudi, Ali Ahmadinia
{"title":"An embedded intelligence engine for driver drowsiness detection","authors":"Shirisha Vadlamudi,&nbsp;Ali Ahmadinia","doi":"10.1049/cdt2.12036","DOIUrl":null,"url":null,"abstract":"<p>Motor vehicle crashes involving drowsy driving are huge in number all over the world. Many studies revealed that 10%–30% of crashes are due to drowsy driving. Fatigue has costly effects on the safety, health, and quality of life. This drowsiness of drivers can be detected using various methods, for example, algorithms based on behavioural gestures, physiological signals and vitals. Also, few of them are vehicle based. Drowsiness of drivers was detected based on steering wheel movement and lane change patterns. A pattern is derived based on slow drifting and fast corrective steering movement. A prototype that detects the drowsiness of an automobile driver using artificial intelligence techniques, precisely using open-source tools like TensorFlow Lite on a Raspberry Pi development board, is developed. The TensorFlow model is trained on images captured from the video with the help of object detection using cascade classifier. In order to have a better accuracy, an Inception v3 architecture is used in pre-training the model with the image dataset. The final model is created and trained using long short-term memory and then the final TensorFlow model is converted to TensorFlow Lite model and this Lite model is used on Raspberry Pi board to detect the drowsiness of drivers. The results are comparable with desktop-based results in the literature.</p>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":"16 1","pages":"10-18"},"PeriodicalIF":1.1000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cdt2.12036","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computers and Digital Techniques","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cdt2.12036","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 2

Abstract

Motor vehicle crashes involving drowsy driving are huge in number all over the world. Many studies revealed that 10%–30% of crashes are due to drowsy driving. Fatigue has costly effects on the safety, health, and quality of life. This drowsiness of drivers can be detected using various methods, for example, algorithms based on behavioural gestures, physiological signals and vitals. Also, few of them are vehicle based. Drowsiness of drivers was detected based on steering wheel movement and lane change patterns. A pattern is derived based on slow drifting and fast corrective steering movement. A prototype that detects the drowsiness of an automobile driver using artificial intelligence techniques, precisely using open-source tools like TensorFlow Lite on a Raspberry Pi development board, is developed. The TensorFlow model is trained on images captured from the video with the help of object detection using cascade classifier. In order to have a better accuracy, an Inception v3 architecture is used in pre-training the model with the image dataset. The final model is created and trained using long short-term memory and then the final TensorFlow model is converted to TensorFlow Lite model and this Lite model is used on Raspberry Pi board to detect the drowsiness of drivers. The results are comparable with desktop-based results in the literature.

Abstract Image

用于驾驶员睡意检测的嵌入式智能引擎
昏睡驾驶引起的机动车撞车事故在世界范围内数量巨大。许多研究表明,10%-30%的车祸是由于疲劳驾驶造成的。疲劳对安全、健康和生活质量的影响是昂贵的。驾驶员的困倦可以通过各种方法检测,例如,基于行为手势、生理信号和生命体征的算法。此外,它们中很少是基于车辆的。驾驶员的睡意是根据方向盘的运动和变道模式来检测的。推导了一种基于慢漂移和快速修正转向运动的模式。一款使用人工智能技术检测汽车驾驶员睡意的原型机被开发出来,该技术精确地使用了树莓派开发板上的TensorFlow Lite等开源工具。利用级联分类器进行目标检测,对视频中捕获的图像进行TensorFlow模型的训练。为了获得更好的准确性,使用Inception v3架构对图像数据集进行模型预训练。使用长短期记忆创建和训练最终模型,然后将最终的TensorFlow模型转换为TensorFlow Lite模型,该Lite模型用于树莓派板上检测驾驶员的嗜睡状态。结果与文献中基于桌面的结果相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Computers and Digital Techniques
IET Computers and Digital Techniques 工程技术-计算机:理论方法
CiteScore
3.50
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: IET Computers & Digital Techniques publishes technical papers describing recent research and development work in all aspects of digital system-on-chip design and test of electronic and embedded systems, including the development of design automation tools (methodologies, algorithms and architectures). Papers based on the problems associated with the scaling down of CMOS technology are particularly welcome. It is aimed at researchers, engineers and educators in the fields of computer and digital systems design and test. The key subject areas of interest are: Design Methods and Tools: CAD/EDA tools, hardware description languages, high-level and architectural synthesis, hardware/software co-design, platform-based design, 3D stacking and circuit design, system on-chip architectures and IP cores, embedded systems, logic synthesis, low-power design and power optimisation. Simulation, Test and Validation: electrical and timing simulation, simulation based verification, hardware/software co-simulation and validation, mixed-domain technology modelling and simulation, post-silicon validation, power analysis and estimation, interconnect modelling and signal integrity analysis, hardware trust and security, design-for-testability, embedded core testing, system-on-chip testing, on-line testing, automatic test generation and delay testing, low-power testing, reliability, fault modelling and fault tolerance. Processor and System Architectures: many-core systems, general-purpose and application specific processors, computational arithmetic for DSP applications, arithmetic and logic units, cache memories, memory management, co-processors and accelerators, systems and networks on chip, embedded cores, platforms, multiprocessors, distributed systems, communication protocols and low-power issues. Configurable Computing: embedded cores, FPGAs, rapid prototyping, adaptive computing, evolvable and statically and dynamically reconfigurable and reprogrammable systems, reconfigurable hardware. Design for variability, power and aging: design methods for variability, power and aging aware design, memories, FPGAs, IP components, 3D stacking, energy harvesting. Case Studies: emerging applications, applications in industrial designs, and design frameworks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信