{"title":"Leakage Performance Improvement in Multi-Bridge-Channel Field Effect Transistor (MBCFET) by Adding Core Insulator Layer","authors":"Saehoon Joung, Soyoung Kim","doi":"10.1109/SISPAD.2019.8870498","DOIUrl":null,"url":null,"abstract":"Altering from existing planar devices to FinFETs has revolutionized device performance, but demands of leakage and gate controllability are increasing relentlessly. Gate all around field effect transistor (GAAFET) is expected to be the next-generation device that meets these needs. This paper suggests a way to improve the gate electrostatic characteristics by adding an oxidation process to the conventional multi-bridge-channel field effect transistor (MBCFET) process. The main advantage of the proposed method is that a device with ultimate electrostatic properties can be implemented without changing the complex and expensive photo-patterning. In the proposed device, the immunity of short channel effects is enhanced in a single transistor. And the performance of ring oscillator (RO) and SRAM was confirmed to be improved by Sentaurus technology computer aided design (TCAD) mixed-mode simulation.","PeriodicalId":6755,"journal":{"name":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"78 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2019.8870498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Altering from existing planar devices to FinFETs has revolutionized device performance, but demands of leakage and gate controllability are increasing relentlessly. Gate all around field effect transistor (GAAFET) is expected to be the next-generation device that meets these needs. This paper suggests a way to improve the gate electrostatic characteristics by adding an oxidation process to the conventional multi-bridge-channel field effect transistor (MBCFET) process. The main advantage of the proposed method is that a device with ultimate electrostatic properties can be implemented without changing the complex and expensive photo-patterning. In the proposed device, the immunity of short channel effects is enhanced in a single transistor. And the performance of ring oscillator (RO) and SRAM was confirmed to be improved by Sentaurus technology computer aided design (TCAD) mixed-mode simulation.