{"title":"Yeast supplementation alleviates the negative effects of greywater irrigation on lettuce and maize","authors":"LP Tshapa, G. Naidoo, Sershen, KK Naidoo","doi":"10.17159/wsa/2022.v48.i3.3939","DOIUrl":null,"url":null,"abstract":"Water scarcity has led to increased use of wastewater, particularly greywater, for crop irrigation. This study investigated whether the addition of yeast can alleviate the potential negative effects of greywater use on lettuce (Lactuca sativa L.) and maize (Zea mays L.). Seeds and seedlings were treated with 4 concentrations (0.005; 0.01; 0.015 and 0.020 g‧mL−1) of yeast-treated tapwater (YTW) and greywater (YGW). Tapwater (TW) and greywater (GW) without yeast served as controls. In general, an increase in yeast concentration compromised seed germination in Petri dishes, but improved germination in soil. Tapwater was more effective than GW in promoting germination and growth in both species. Lower concentrations of yeast generally increased germination capacity in both species compared to the controls. Total biomass, number of leaves, chlorophyll content, leaf area, photosynthetic rate and maximum quantum yield of photosystem II (Fv/Fm) were significantly higher in yeast treatments in both species, compared with the controls. Biomass accumulation, total leaf area, chlorophyll content and photosynthesis were higher in YGW than controls and YTW. Differences in biomass allocation between treatments may be due to changes in soil moisture, pH and electrical conductivity of the soil caused by yeast supplementation. This study showed that plants treated with YGW performed better than those treated with YTW and without yeast. Yeast supplementation of greywater could increase water recycling and provide a cheap bio-fertilizer to home growers, whilst significantly improving yield in both species. This innovative approach may enhance water and food security of subsistence farmers in rural areas.","PeriodicalId":23623,"journal":{"name":"Water SA","volume":"21 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water SA","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.17159/wsa/2022.v48.i3.3939","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Water scarcity has led to increased use of wastewater, particularly greywater, for crop irrigation. This study investigated whether the addition of yeast can alleviate the potential negative effects of greywater use on lettuce (Lactuca sativa L.) and maize (Zea mays L.). Seeds and seedlings were treated with 4 concentrations (0.005; 0.01; 0.015 and 0.020 g‧mL−1) of yeast-treated tapwater (YTW) and greywater (YGW). Tapwater (TW) and greywater (GW) without yeast served as controls. In general, an increase in yeast concentration compromised seed germination in Petri dishes, but improved germination in soil. Tapwater was more effective than GW in promoting germination and growth in both species. Lower concentrations of yeast generally increased germination capacity in both species compared to the controls. Total biomass, number of leaves, chlorophyll content, leaf area, photosynthetic rate and maximum quantum yield of photosystem II (Fv/Fm) were significantly higher in yeast treatments in both species, compared with the controls. Biomass accumulation, total leaf area, chlorophyll content and photosynthesis were higher in YGW than controls and YTW. Differences in biomass allocation between treatments may be due to changes in soil moisture, pH and electrical conductivity of the soil caused by yeast supplementation. This study showed that plants treated with YGW performed better than those treated with YTW and without yeast. Yeast supplementation of greywater could increase water recycling and provide a cheap bio-fertilizer to home growers, whilst significantly improving yield in both species. This innovative approach may enhance water and food security of subsistence farmers in rural areas.
期刊介绍:
WaterSA publishes refereed, original work in all branches of water science, technology and engineering. This includes water resources development; the hydrological cycle; surface hydrology; geohydrology and hydrometeorology; limnology; salinisation; treatment and management of municipal and industrial water and wastewater; treatment and disposal of sewage sludge; environmental pollution control; water quality and treatment; aquaculture in terms of its impact on the water resource; agricultural water science; etc.
Water SA is the WRC’s accredited scientific journal which contains original research articles and review articles on all aspects of water science, technology, engineering and policy. Water SA has been in publication since 1975 and includes articles from both local and international authors. The journal is issued quarterly (4 editions per year).