Probabilistic Metric Embedding via Metric Labeling

IF 1.3 4区 物理与天体物理 Q4 PHYSICS, APPLIED
Kamesh Munagala, Govind S. Sankar, Erin Taylor
{"title":"Probabilistic Metric Embedding via Metric Labeling","authors":"Kamesh Munagala, Govind S. Sankar, Erin Taylor","doi":"10.4230/LIPIcs.APPROX/RANDOM.2023.2","DOIUrl":null,"url":null,"abstract":"We consider probabilistic embedding of metric spaces into ultra-metrics (or equivalently to a constant factor, into hierarchically separated trees) to minimize the expected distortion of any pairwise distance. Such embeddings have been widely used in network design and online algorithms. Our main result is a polynomial time algorithm that approximates the optimal distortion on any instance to within a constant factor. We achieve this via a novel LP formulation that reduces this problem to a probabilistic version of uniform metric labeling.","PeriodicalId":54319,"journal":{"name":"Spin","volume":"27 1","pages":"2:1-2:10"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spin","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider probabilistic embedding of metric spaces into ultra-metrics (or equivalently to a constant factor, into hierarchically separated trees) to minimize the expected distortion of any pairwise distance. Such embeddings have been widely used in network design and online algorithms. Our main result is a polynomial time algorithm that approximates the optimal distortion on any instance to within a constant factor. We achieve this via a novel LP formulation that reduces this problem to a probabilistic version of uniform metric labeling.
基于度量标记的概率度量嵌入
我们考虑将度量空间概率嵌入到超度量中(或等价于常数因子,嵌入到分层分离的树中),以最小化任何两两距离的预期畸变。这种嵌入被广泛应用于网络设计和在线算法中。我们的主要结果是一个多项式时间算法,它在任何实例上近似于一个常数因子内的最佳失真。我们通过一种新颖的LP公式实现了这一目标,该公式将该问题简化为均匀度量标记的概率版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Spin
Spin Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
2.10
自引率
11.10%
发文量
34
期刊介绍: Spin electronics encompasses a multidisciplinary research effort involving magnetism, semiconductor electronics, materials science, chemistry and biology. SPIN aims to provide a forum for the presentation of research and review articles of interest to all researchers in the field. The scope of the journal includes (but is not necessarily limited to) the following topics: *Materials: -Metals -Heusler compounds -Complex oxides: antiferromagnetic, ferromagnetic -Dilute magnetic semiconductors -Dilute magnetic oxides -High performance and emerging magnetic materials *Semiconductor electronics *Nanodevices: -Fabrication -Characterization *Spin injection *Spin transport *Spin transfer torque *Spin torque oscillators *Electrical control of magnetic properties *Organic spintronics *Optical phenomena and optoelectronic spin manipulation *Applications and devices: -Novel memories and logic devices -Lab-on-a-chip -Others *Fundamental and interdisciplinary studies: -Spin in low dimensional system -Spin in medical sciences -Spin in other fields -Computational materials discovery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信