Role of automated detection of respiratory related heart rate changes in the diagnosis of sleep disordered breathing

S. Maresh, Adhithi Keerthana Athikumar, Nabila Ahmed, Shivapriya Chandu, J. Prowting, Layth Tumah, Abed A. Najjar, H. Khan, Muna Sankari, O. Lasisi, L. Ravelo, P. Peppard, M. Badr, A. Sankari
{"title":"Role of automated detection of respiratory related heart rate changes in the diagnosis of sleep disordered breathing","authors":"S. Maresh, Adhithi Keerthana Athikumar, Nabila Ahmed, Shivapriya Chandu, J. Prowting, Layth Tumah, Abed A. Najjar, H. Khan, Muna Sankari, O. Lasisi, L. Ravelo, P. Peppard, M. Badr, A. Sankari","doi":"10.3389/frsle.2023.1162652","DOIUrl":null,"url":null,"abstract":"Study objectives The objective of this study was to determine whether electrocardiogram (ECG) and heart rate accelerations that occur in the vicinity of respiratory events could predict the severity of sleep-disordered breathing (SDB). Methods De-identified polysomnogram (NPSG) recordings from 2091 eligible participants in the Sleep Heart Health Study (SHHS) were evaluated after developing and validating an automated algorithm using an initial set of recordings from 1,438 participants to detect RR interval (RRI) dips in ECG and heart rate accelerations from pulse rate signal. Within-subject comparisons were made between the apnea-hypopnea index (AHI) and both the total RRI dip index (total RRDI) and total heart rate acceleration index (total HRAI). Results The estimated AHIs using respiratory-related HRAI correlated with NPSG AHI both in the unadjusted and adjusted model (B: 0.83 and 0.81, respectively P < 0.05). Respiratory-related HRAI had a strong agreement with NPSG AHI (intraclass correlation coefficient-ICC: 0.64, whereas respiratory-related RRDI displayed weaker agreement and ICC: 0.38). Further assessment of respiratory-related HRAI (≥5 events/h) showed a strong diagnostic ability (78, 87, 81, and 56% agreement for traditional AHI cutoffs 5, 10, 15, and 30 events/h, respectively). At the AHI cutoff of 5 events/h the receiver operating curves (ROC) revealed an area under the curve (AUCs) of 0.90 and 0.96 for RE RRDI and RE HRAI respectively. Conclusion The automated respiratory-related heart rate measurements derived from pulse rate provide an accurate method to detect the presence of SDB. Therefore, the ability of mathematical models to accurately detect respiratory-related heart rate changes from pulse rate may enable an additional method to diagnose SDB.","PeriodicalId":73106,"journal":{"name":"Frontiers in sleep","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in sleep","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frsle.2023.1162652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Study objectives The objective of this study was to determine whether electrocardiogram (ECG) and heart rate accelerations that occur in the vicinity of respiratory events could predict the severity of sleep-disordered breathing (SDB). Methods De-identified polysomnogram (NPSG) recordings from 2091 eligible participants in the Sleep Heart Health Study (SHHS) were evaluated after developing and validating an automated algorithm using an initial set of recordings from 1,438 participants to detect RR interval (RRI) dips in ECG and heart rate accelerations from pulse rate signal. Within-subject comparisons were made between the apnea-hypopnea index (AHI) and both the total RRI dip index (total RRDI) and total heart rate acceleration index (total HRAI). Results The estimated AHIs using respiratory-related HRAI correlated with NPSG AHI both in the unadjusted and adjusted model (B: 0.83 and 0.81, respectively P < 0.05). Respiratory-related HRAI had a strong agreement with NPSG AHI (intraclass correlation coefficient-ICC: 0.64, whereas respiratory-related RRDI displayed weaker agreement and ICC: 0.38). Further assessment of respiratory-related HRAI (≥5 events/h) showed a strong diagnostic ability (78, 87, 81, and 56% agreement for traditional AHI cutoffs 5, 10, 15, and 30 events/h, respectively). At the AHI cutoff of 5 events/h the receiver operating curves (ROC) revealed an area under the curve (AUCs) of 0.90 and 0.96 for RE RRDI and RE HRAI respectively. Conclusion The automated respiratory-related heart rate measurements derived from pulse rate provide an accurate method to detect the presence of SDB. Therefore, the ability of mathematical models to accurately detect respiratory-related heart rate changes from pulse rate may enable an additional method to diagnose SDB.
呼吸相关心率变化的自动检测在睡眠呼吸障碍诊断中的作用
本研究的目的是确定在呼吸事件附近发生的心电图(ECG)和心率加速是否可以预测睡眠呼吸障碍(SDB)的严重程度。方法利用1438名参与者的初始记录,开发并验证了一种自动算法,对睡眠心脏健康研究(SHHS)中2091名符合条件的参与者的去识别多导睡眠图(NPSG)记录进行评估,以从脉搏率信号中检测ECG的RR间隔(RRI)下降和心率加速。在受试者内比较呼吸暂停低通气指数(AHI)与总RRI下降指数(total RRDI)和总心率加速指数(total HRAI)。结果在未调整和调整模型中,使用呼吸相关HRAI估计的AHI与NPSG AHI相关(B值分别为0.83和0.81,P < 0.05)。呼吸相关HRAI与NPSG AHI有很强的一致性(类内相关系数-ICC: 0.64),而呼吸相关RRDI的一致性较弱,ICC: 0.38)。进一步评估呼吸相关HRAI(≥5个事件/小时)显示出较强的诊断能力(传统的AHI临界值分别为5、10、15和30个事件/小时,符合率分别为78%、87%、81%和56%)。在5个事件/h的AHI截止时,受试者工作曲线(ROC)显示RE RRDI和RE HRAI的曲线下面积(auc)分别为0.90和0.96。结论基于脉搏率的呼吸相关心率自动测量为SDB的检测提供了一种准确的方法。因此,数学模型从脉搏率中准确检测呼吸相关心率变化的能力,可能成为诊断SDB的一种额外方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信