Re-weighted Adversarial Adaptation Network for Unsupervised Domain Adaptation

Qingchao Chen, Yang Liu, Zhaowen Wang, I. Wassell, K. Chetty
{"title":"Re-weighted Adversarial Adaptation Network for Unsupervised Domain Adaptation","authors":"Qingchao Chen, Yang Liu, Zhaowen Wang, I. Wassell, K. Chetty","doi":"10.1109/CVPR.2018.00832","DOIUrl":null,"url":null,"abstract":"Unsupervised Domain Adaptation (UDA) aims to transfer domain knowledge from existing well-defined tasks to new ones where labels are unavailable. In the real-world applications, as the domain (task) discrepancies are usually uncontrollable, it is significantly motivated to match the feature distributions even if the domain discrepancies are disparate. Additionally, as no label is available in the target domain, how to successfully adapt the classifier from the source to the target domain still remains an open question. In this paper, we propose the Re-weighted Adversarial Adaptation Network (RAAN) to reduce the feature distribution divergence and adapt the classifier when domain discrepancies are disparate. Specifically, to alleviate the need of common supports in matching the feature distribution, we choose to minimize optimal transport (OT) based Earth-Mover (EM) distance and reformulate it to a minimax objective function. Utilizing this, RAAN can be trained in an end-to-end and adversarial manner. To further adapt the classifier, we propose to match the label distribution and embed it into the adversarial training. Finally, after extensive evaluation of our method using UDA datasets of varying difficulty, RAAN achieved the state-of-the-art results and outperformed other methods by a large margin when the domain shifts are disparate.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"41 1","pages":"7976-7985"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"113","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2018.00832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 113

Abstract

Unsupervised Domain Adaptation (UDA) aims to transfer domain knowledge from existing well-defined tasks to new ones where labels are unavailable. In the real-world applications, as the domain (task) discrepancies are usually uncontrollable, it is significantly motivated to match the feature distributions even if the domain discrepancies are disparate. Additionally, as no label is available in the target domain, how to successfully adapt the classifier from the source to the target domain still remains an open question. In this paper, we propose the Re-weighted Adversarial Adaptation Network (RAAN) to reduce the feature distribution divergence and adapt the classifier when domain discrepancies are disparate. Specifically, to alleviate the need of common supports in matching the feature distribution, we choose to minimize optimal transport (OT) based Earth-Mover (EM) distance and reformulate it to a minimax objective function. Utilizing this, RAAN can be trained in an end-to-end and adversarial manner. To further adapt the classifier, we propose to match the label distribution and embed it into the adversarial training. Finally, after extensive evaluation of our method using UDA datasets of varying difficulty, RAAN achieved the state-of-the-art results and outperformed other methods by a large margin when the domain shifts are disparate.
无监督域自适应的重加权对抗自适应网络
无监督域自适应(Unsupervised Domain Adaptation, UDA)旨在将已有的领域知识从定义良好的任务转移到没有标签的新任务中。在现实世界的应用程序中,由于领域(任务)差异通常是不可控的,因此即使领域差异是完全不同的,也很有必要匹配特征分布。此外,由于目标域没有可用的标签,如何成功地使分类器从源域适应目标域仍然是一个悬而未决的问题。在本文中,我们提出了重加权对抗自适应网络(RAAN)来减少特征分布差异,并在域差异完全不同的情况下自适应分类器。具体而言,为了减轻匹配特征分布时对公共支撑的需求,我们选择最小化基于最优运输(OT)的土方(EM)距离,并将其重新表述为极小极大目标函数。利用这一点,可以以端到端对抗的方式训练RAAN。为了进一步适应分类器,我们提出匹配标签分布并将其嵌入到对抗性训练中。最后,在使用不同难度的UDA数据集对我们的方法进行了广泛的评估之后,RAAN获得了最先进的结果,并且在不同的域转移时大大优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信