S. Z. Zainal Ariffin, A. M. Efendee, A. Redhwan, M. Alias, A. Arifuddin, M. Kamrol Amri, M. M. Mohd Ali, K. Khalil, A. Aminullah, A. Hasnain, N. Baba
{"title":"Optimisation of variation coolant system techniques in machining aluminium alloy Al319","authors":"S. Z. Zainal Ariffin, A. M. Efendee, A. Redhwan, M. Alias, A. Arifuddin, M. Kamrol Amri, M. M. Mohd Ali, K. Khalil, A. Aminullah, A. Hasnain, N. Baba","doi":"10.5604/01.3001.0016.1432","DOIUrl":null,"url":null,"abstract":"Cutting parameters are often chosen for machining by machine operators in the industry. The experience and efficiency of the machine operator in producing a quality product are frequently used to decide parameter selection—low productivity results from improper parameter selection, inefficient machining, and technological issues. Today's key issues in the machining industry are focusing on increasing machining performance on surface roughness while minimising coolant usage. The study's objective is to enhance the performance of the nozzle lubrication system during the turning operation of an aluminium alloy 319 workpieces (Al319) to generate good surface roughness by applying turning parameters such as cutting speed, feed rate, and the depth of cut.\n\nResponse Surface Method (RSM) was used to create the experimental method for this investigation, carried out using a CNC lathe machine with two axial movements and a wet cooling nozzle with a size of 1.0 mm. Synthetic soluble lubricants, Al2O3-coated cemented carbide inserts, and Aluminium alloy 319 were utilised as cutting tools and workpiece materials.\n\nTo study the influence of cutting parameters on surface roughness, the Analysis of Variance (ANOVA) approach was utilised while the response surface method was performed to achieve an optimum machining performance (RSM). When comparing dry and wet cooling systems, the size of 1.0 mm nozzle shows appropriate surface roughness. According to the ANOVA analysis, the key factor impacting the surface roughness as machining performance in lubrication technique experiments was the utilisation of 1.0 mm nozzle size.\n\nThe findings of combination machining parameters at a cutting speed of 270 m/min and a cutting depth of 0.60 mm at a feed rate of 0.08 mm/min offered the best results, achieving a surface roughness, Ra of 0.94 µm.\n\nThe use of coolant size nozzle 1.0 mm technology combined with the use of correct machining parameters can improve machining cuts.\n\nThe novel size of 1.0 mm nozzle in this current research is also valuable for reducing and increasing productivity in the machining business, as well as reducing dependency on machining operators' experience and abilities.\n\n","PeriodicalId":14825,"journal":{"name":"Journal of Achievements in Materials and Manufacturing Engineering","volume":"104 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Achievements in Materials and Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0016.1432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Cutting parameters are often chosen for machining by machine operators in the industry. The experience and efficiency of the machine operator in producing a quality product are frequently used to decide parameter selection—low productivity results from improper parameter selection, inefficient machining, and technological issues. Today's key issues in the machining industry are focusing on increasing machining performance on surface roughness while minimising coolant usage. The study's objective is to enhance the performance of the nozzle lubrication system during the turning operation of an aluminium alloy 319 workpieces (Al319) to generate good surface roughness by applying turning parameters such as cutting speed, feed rate, and the depth of cut.
Response Surface Method (RSM) was used to create the experimental method for this investigation, carried out using a CNC lathe machine with two axial movements and a wet cooling nozzle with a size of 1.0 mm. Synthetic soluble lubricants, Al2O3-coated cemented carbide inserts, and Aluminium alloy 319 were utilised as cutting tools and workpiece materials.
To study the influence of cutting parameters on surface roughness, the Analysis of Variance (ANOVA) approach was utilised while the response surface method was performed to achieve an optimum machining performance (RSM). When comparing dry and wet cooling systems, the size of 1.0 mm nozzle shows appropriate surface roughness. According to the ANOVA analysis, the key factor impacting the surface roughness as machining performance in lubrication technique experiments was the utilisation of 1.0 mm nozzle size.
The findings of combination machining parameters at a cutting speed of 270 m/min and a cutting depth of 0.60 mm at a feed rate of 0.08 mm/min offered the best results, achieving a surface roughness, Ra of 0.94 µm.
The use of coolant size nozzle 1.0 mm technology combined with the use of correct machining parameters can improve machining cuts.
The novel size of 1.0 mm nozzle in this current research is also valuable for reducing and increasing productivity in the machining business, as well as reducing dependency on machining operators' experience and abilities.
期刊介绍:
The Journal of Achievements in Materials and Manufacturing Engineering has been published by the Association for Computational Materials Science and Surface Engineering in collaboration with the World Academy of Materials and Manufacturing Engineering WAMME and the Section Metallic Materials of the Committee of Materials Science of the Polish Academy of Sciences as a monthly. It has 12 points which was received during the evaluation by the Ministry of Science and Higher Education journals and ICV 2017:100 on the ICI Journals Master list announced by the Index Copernicus. It is a continuation of "Proceedings on Achievements in Mechanical and Materials Engineering" published in 1992-2005. Scope: Materials[...] Properties[...] Methodology of Research[...] Analysis and Modelling[...] Manufacturing and Processingv Biomedical and Dental Engineering and Materials[...] Cleaner Production[...] Industrial Mangement and Organisation [...] Education and Research Trends[...]