{"title":"Recent research progress on the phase-field model of microstructural evolution during metal solidification","authors":"Kaiyang Wang, Shaojie Lv, Honghui Wu, Guilin Wu, Shuize Wang, Junheng Gao, Jiaming Zhu, Xusheng Yang, Xinping Mao","doi":"10.1007/s12613-023-2710-x","DOIUrl":null,"url":null,"abstract":"<div><p>Solidification structure is a key aspect for understanding the mechanical performance of metal alloys, wherein composition and casting parameters considerably influence solidification and determine the unique microstructure of the alloys. By following the principle of free energy minimization, the phase-field method eliminates the need for tracking the solid/liquid phase interface and has greatly accelerated the research and development efforts geared toward optimizing metal solidification microstructures. The recent progress in the application of phase-field simulation to investigate the effect of alloy composition and casting process parameters on the solidification structure of metals is summarized in this review. The effects of several typical elements and process parameters, including carbon, boron, silicon, cooling rate, pulling speed, scanning speed, anisotropy, and gravity, on the solidification structure are discussed. The present work also addresses the future prospects of phase-field simulation and aims to facilitate the widespread applications of phase-field approaches in the simulation of microstructures during solidification.</p></div>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":"30 11","pages":"2095 - 2111"},"PeriodicalIF":5.6000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12613-023-2710-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Solidification structure is a key aspect for understanding the mechanical performance of metal alloys, wherein composition and casting parameters considerably influence solidification and determine the unique microstructure of the alloys. By following the principle of free energy minimization, the phase-field method eliminates the need for tracking the solid/liquid phase interface and has greatly accelerated the research and development efforts geared toward optimizing metal solidification microstructures. The recent progress in the application of phase-field simulation to investigate the effect of alloy composition and casting process parameters on the solidification structure of metals is summarized in this review. The effects of several typical elements and process parameters, including carbon, boron, silicon, cooling rate, pulling speed, scanning speed, anisotropy, and gravity, on the solidification structure are discussed. The present work also addresses the future prospects of phase-field simulation and aims to facilitate the widespread applications of phase-field approaches in the simulation of microstructures during solidification.
期刊介绍:
International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.