Planning trajectories on uneven terrain using optimization and non-linear time scaling techniques

A. Singh, K. Krishna, S. Saripalli
{"title":"Planning trajectories on uneven terrain using optimization and non-linear time scaling techniques","authors":"A. Singh, K. Krishna, S. Saripalli","doi":"10.1109/IROS.2012.6385662","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a novel framework of generating trajectories which explicitly satisfies the stability constraints such as no-slip and permanent ground contact on uneven terrain. The main contributions of this paper are: (1) It derives analytical functions depicting the evolution of the vehicle on uneven terrain. These functional descriptions enable us to have a fast evaluation of possible vehicle stability along various directions on the terrain and this information is used to control the shape of the trajectory. (2) It introduces a novel paradigm wherein non-linear time scaling brought about by parametrized exponential functions are used to modify the velocity and acceleration profile of the vehicle so that these satisfy the no-slip and contact constraints. We show that nonlinear time scaling manipulates velocity and acceleration profile in a versatile manner and consequently has exceptional utility not only in uneven terrain navigation but also in general in any problem where it is required to change the velocity of the robot while keeping the path unchanged like collision avoidance.","PeriodicalId":6358,"journal":{"name":"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"33 1","pages":"3538-3545"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2012.6385662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this paper we introduce a novel framework of generating trajectories which explicitly satisfies the stability constraints such as no-slip and permanent ground contact on uneven terrain. The main contributions of this paper are: (1) It derives analytical functions depicting the evolution of the vehicle on uneven terrain. These functional descriptions enable us to have a fast evaluation of possible vehicle stability along various directions on the terrain and this information is used to control the shape of the trajectory. (2) It introduces a novel paradigm wherein non-linear time scaling brought about by parametrized exponential functions are used to modify the velocity and acceleration profile of the vehicle so that these satisfy the no-slip and contact constraints. We show that nonlinear time scaling manipulates velocity and acceleration profile in a versatile manner and consequently has exceptional utility not only in uneven terrain navigation but also in general in any problem where it is required to change the velocity of the robot while keeping the path unchanged like collision avoidance.
利用优化和非线性时间尺度技术在不平坦地形上规划轨迹
本文介绍了一种新的生成轨迹的框架,该框架明确地满足不平坦地形上的无滑移和永久地面接触等稳定性约束。本文的主要贡献有:(1)导出了描述车辆在不平坦地形上演化的解析函数。这些功能描述使我们能够快速评估车辆在地形上沿不同方向的可能稳定性,并使用这些信息来控制轨迹的形状。(2)引入了一种新的范式,利用参数化指数函数带来的非线性时间尺度来修改车辆的速度和加速度分布,使其满足无滑移和接触约束。我们表明,非线性时间尺度以一种通用的方式操纵速度和加速度轮廓,因此不仅在不平坦的地形导航中具有特殊的效用,而且在任何需要改变机器人速度同时保持路径不变的问题(如避碰)中也具有特殊的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信