A FAULT DIAGNOSIS PROPOSAL WITH ONLINE IMPUTATION TO INCOMPLETE OBSERVATIONS IN INDUSTRIAL PLANTS

O. Llanes-Santiago, B. C. Rivero-Benedico, S. C. Gálvez-Viera, E. F. Rodríguez-Morant, R. Torres-Cabeza, A. J. Silva-Neto
{"title":"A FAULT DIAGNOSIS PROPOSAL WITH ONLINE IMPUTATION TO INCOMPLETE OBSERVATIONS IN INDUSTRIAL PLANTS","authors":"O. Llanes-Santiago, B. C. Rivero-Benedico, S. C. Gálvez-Viera, E. F. Rodríguez-Morant, R. Torres-Cabeza, A. J. Silva-Neto","doi":"10.24275/UAM/IZT/DCBI/REVMEXINGQUIM/2019V18N1/LLANES","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of fault diagnosis in complex industrial systems in the presence of missing data is addressed. Firstly, how to perform online imputation when there are missing values in the observations obtained by the data acquisition system is presented. Later, the possibility to apply advanced statistical techniques as Sequential Regression Multiple Imputation, Singular Value Decomposition, Local Least Squares Imputation  and k- Nearest Neighbors as examples of possible tools to be used in the online imputation is displayed.  In addition, the effects on the fault diagnosis process, when using these statistics tools to estimate the missing data are analyzed. A Neural Network Multi-layer Perceptron for the fault diagnosis system was used. The study was done using the Tennessee Eastman benchmark process. The results show the viability of the proposal.","PeriodicalId":21335,"journal":{"name":"Revista Mexicana de Ingeniería Química","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Mexicana de Ingeniería Química","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24275/UAM/IZT/DCBI/REVMEXINGQUIM/2019V18N1/LLANES","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, the problem of fault diagnosis in complex industrial systems in the presence of missing data is addressed. Firstly, how to perform online imputation when there are missing values in the observations obtained by the data acquisition system is presented. Later, the possibility to apply advanced statistical techniques as Sequential Regression Multiple Imputation, Singular Value Decomposition, Local Least Squares Imputation  and k- Nearest Neighbors as examples of possible tools to be used in the online imputation is displayed.  In addition, the effects on the fault diagnosis process, when using these statistics tools to estimate the missing data are analyzed. A Neural Network Multi-layer Perceptron for the fault diagnosis system was used. The study was done using the Tennessee Eastman benchmark process. The results show the viability of the proposal.
一种基于不完全观测值的工业装置故障诊断方法
本文研究了存在缺失数据的复杂工业系统的故障诊断问题。首先,介绍了如何在数据采集系统获取的观测值存在缺失值的情况下进行在线补全。随后,展示了应用先进统计技术的可能性,如顺序回归多元Imputation,奇异值分解,局部最小二乘Imputation和k- Nearest Neighbors作为在线Imputation中可能使用的工具的示例。此外,还分析了使用这些统计工具对缺失数据进行估计对故障诊断过程的影响。将神经网络多层感知器用于故障诊断系统。这项研究是使用田纳西伊士曼基准过程完成的。结果表明了该方案的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信