Accelerated point set registration method

IF 1 Q3 ENGINEERING, MULTIDISCIPLINARY
Ryan M Raettig, James D. Anderson, S. Nykl, L. Merkle
{"title":"Accelerated point set registration method","authors":"Ryan M Raettig, James D. Anderson, S. Nykl, L. Merkle","doi":"10.1177/15485129221150454","DOIUrl":null,"url":null,"abstract":"In computer vision and robotics, point set registration is a fundamental issue used to estimate the relative position and orientation (pose) of an object in an environment. In a rapidly changing scene, this method must be executed frequently and in a timely manner, or the pose estimation becomes outdated. The point registration method is a computational bottleneck of a vision-processing pipeline. For this reason, this paper focuses on speeding up a widely used point registration method, the iterative closest point (ICP) algorithm. In addition, the ICP algorithm is transformed into a massively parallel algorithm and mapped onto a vector processor to realize a speedup of approximately an order of magnitude. Finally, we provide algorithmic and run-time analysis.","PeriodicalId":44661,"journal":{"name":"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15485129221150454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

In computer vision and robotics, point set registration is a fundamental issue used to estimate the relative position and orientation (pose) of an object in an environment. In a rapidly changing scene, this method must be executed frequently and in a timely manner, or the pose estimation becomes outdated. The point registration method is a computational bottleneck of a vision-processing pipeline. For this reason, this paper focuses on speeding up a widely used point registration method, the iterative closest point (ICP) algorithm. In addition, the ICP algorithm is transformed into a massively parallel algorithm and mapped onto a vector processor to realize a speedup of approximately an order of magnitude. Finally, we provide algorithmic and run-time analysis.
加速点集配准方法
在计算机视觉和机器人技术中,点集配准是用于估计环境中物体的相对位置和方向(姿态)的基本问题。在快速变化的场景中,这种方法必须频繁且及时地执行,否则姿势估计就会过时。点配准方法是视觉处理流水线的计算瓶颈。为此,本文重点研究了一种被广泛应用的点配准方法——迭代最近点(ICP)算法。此外,将ICP算法转换为大规模并行算法,并将其映射到矢量处理器上,实现了大约一个数量级的加速。最后,我们提供了算法和运行时分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
12.50%
发文量
40
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信