Ryan Alweiss, Chady Ben Hamida, Xiaoyu He, Alexander Moreira
{"title":"On the subgraph query problem","authors":"Ryan Alweiss, Chady Ben Hamida, Xiaoyu He, Alexander Moreira","doi":"10.1017/S0963548320000218","DOIUrl":null,"url":null,"abstract":"Abstract Given a fixed graph H, a real number p (0, 1) and an infinite Erdös–Rényi graph G ∼ G(∞, p), how many adjacency queries do we have to make to find a copy of H inside G with probability at least 1/2? Determining this number f(H, p) is a variant of the subgraph query problem introduced by Ferber, Krivelevich, Sudakov and Vieira. For every graph H, we improve the trivial upper bound of f(H, p) = O(p−d), where d is the degeneracy of H, by exhibiting an algorithm that finds a copy of H in time O(p−d) as p goes to 0. Furthermore, we prove that there are 2-degenerate graphs which require p−2+o(1) queries, showing for the first time that there exist graphs H for which f(H, p) does not grow like a constant power of p−1 as p goes to 0. Finally, we answer a question of Feige, Gamarnik, Neeman, Rácz and Tetali by showing that for any δ < 2, there exists α < 2 such that one cannot find a clique of order α log2 n in G(n, 1/2) in nδ queries.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0963548320000218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Abstract Given a fixed graph H, a real number p (0, 1) and an infinite Erdös–Rényi graph G ∼ G(∞, p), how many adjacency queries do we have to make to find a copy of H inside G with probability at least 1/2? Determining this number f(H, p) is a variant of the subgraph query problem introduced by Ferber, Krivelevich, Sudakov and Vieira. For every graph H, we improve the trivial upper bound of f(H, p) = O(p−d), where d is the degeneracy of H, by exhibiting an algorithm that finds a copy of H in time O(p−d) as p goes to 0. Furthermore, we prove that there are 2-degenerate graphs which require p−2+o(1) queries, showing for the first time that there exist graphs H for which f(H, p) does not grow like a constant power of p−1 as p goes to 0. Finally, we answer a question of Feige, Gamarnik, Neeman, Rácz and Tetali by showing that for any δ < 2, there exists α < 2 such that one cannot find a clique of order α log2 n in G(n, 1/2) in nδ queries.