{"title":"Read between the interactions: Understanding non-interacted items for accurate multimedia recommendation","authors":"Jiyeon Kim, Taeri Kim, Sang-Wook Kim","doi":"10.2298/csis221031041k","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of multimedia recommendation that additionally utilizes multimedia data, such as visual and textual modalities of items along with the user-item interaction information. Existing multimedia recommender systems assume that all the non-interacted items of a user have the same degree of negativity, thus regarding them as candidates for negative samples when training the model. However, this paper claims that a user?s non-interacted items do not have the same degree of negativity. We classify these non-interacted items of a user into two kinds of items with different characteristics: unknown and uninteresting items. Then, we propose a novel negative sampling technique that only considers the uninteresting items (i.e., rather than the unknown items) as candidates for negative samples. In addition, we show that using the multiple Bayesian personalized ranking (BPR) losses with both unknown and uninteresting items (i.e., all the non20 interacted items) in existing multimedia recommendation methods is very effective in improving recommendation accuracy. By conducting extensive experiments with three real-world datasets, we show the superiority of our ideas. Our ideas can be easily and orthogonally applied to any multimedia recommender systems.","PeriodicalId":50636,"journal":{"name":"Computer Science and Information Systems","volume":"39 1","pages":"933-948"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2298/csis221031041k","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses the problem of multimedia recommendation that additionally utilizes multimedia data, such as visual and textual modalities of items along with the user-item interaction information. Existing multimedia recommender systems assume that all the non-interacted items of a user have the same degree of negativity, thus regarding them as candidates for negative samples when training the model. However, this paper claims that a user?s non-interacted items do not have the same degree of negativity. We classify these non-interacted items of a user into two kinds of items with different characteristics: unknown and uninteresting items. Then, we propose a novel negative sampling technique that only considers the uninteresting items (i.e., rather than the unknown items) as candidates for negative samples. In addition, we show that using the multiple Bayesian personalized ranking (BPR) losses with both unknown and uninteresting items (i.e., all the non20 interacted items) in existing multimedia recommendation methods is very effective in improving recommendation accuracy. By conducting extensive experiments with three real-world datasets, we show the superiority of our ideas. Our ideas can be easily and orthogonally applied to any multimedia recommender systems.
期刊介绍:
About the journal
Home page
Contact information
Aims and scope
Indexing information
Editorial policies
ComSIS consortium
Journal boards
Managing board
For authors
Information for contributors
Paper submission
Article submission through OJS
Copyright transfer form
Download section
For readers
Forthcoming articles
Current issue
Archive
Subscription
For reviewers
View and review submissions
News
Journal''s Facebook page
Call for special issue
New issue notification
Aims and scope
Computer Science and Information Systems (ComSIS) is an international refereed journal, published in Serbia. The objective of ComSIS is to communicate important research and development results in the areas of computer science, software engineering, and information systems.