Wenyuan Liu, Mingliang Fan, Kai Feng, Dingding Guo
{"title":"Automatic Chinese knowledge-based question answering by the MGBA-LSTM-CNN model","authors":"Wenyuan Liu, Mingliang Fan, Kai Feng, Dingding Guo","doi":"10.3233/aic-210003","DOIUrl":null,"url":null,"abstract":"The purpose of knowledge-based question answering (KBQA) is to accurately answer the questions raised by users through knowledge triples. Traditional Chinese KBQA methods rely heavily on artificial features, resulting in unsatisfactory QA results. To solve the above problems, this paper divides Chinese KBQA into two parts: entity extraction and attribute mapping. In the entity extraction stage, the improved Bi-LSTM-CNN-CRF model is used to identify the entity of questions and the Levenshtein distance method is used to resolve the entity link error. In the attribute mapping stage, according to the characteristics of questions and candidate attributes, the MGBA-LSTM-CNN model is proposed to encode questions and candidate attributes from the semantic level and word level, respectively, and splice them into new semantic vectors. Finally, the cosine distance is used to measure the similarity of the two vectors to find candidate attributes most similar to questions. The experimental results show that the system achieves good results in the Chinese question and answer data set.","PeriodicalId":50835,"journal":{"name":"AI Communications","volume":"1 1","pages":"93-110"},"PeriodicalIF":1.4000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/aic-210003","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of knowledge-based question answering (KBQA) is to accurately answer the questions raised by users through knowledge triples. Traditional Chinese KBQA methods rely heavily on artificial features, resulting in unsatisfactory QA results. To solve the above problems, this paper divides Chinese KBQA into two parts: entity extraction and attribute mapping. In the entity extraction stage, the improved Bi-LSTM-CNN-CRF model is used to identify the entity of questions and the Levenshtein distance method is used to resolve the entity link error. In the attribute mapping stage, according to the characteristics of questions and candidate attributes, the MGBA-LSTM-CNN model is proposed to encode questions and candidate attributes from the semantic level and word level, respectively, and splice them into new semantic vectors. Finally, the cosine distance is used to measure the similarity of the two vectors to find candidate attributes most similar to questions. The experimental results show that the system achieves good results in the Chinese question and answer data set.
期刊介绍:
AI Communications is a journal on artificial intelligence (AI) which has a close relationship to EurAI (European Association for Artificial Intelligence, formerly ECCAI). It covers the whole AI community: Scientific institutions as well as commercial and industrial companies.
AI Communications aims to enhance contacts and information exchange between AI researchers and developers, and to provide supranational information to those concerned with AI and advanced information processing. AI Communications publishes refereed articles concerning scientific and technical AI procedures, provided they are of sufficient interest to a large readership of both scientific and practical background. In addition it contains high-level background material, both at the technical level as well as the level of opinions, policies and news.