A. Lebed’, R. I. Verkhodanov, Z. A. Lebed, A. Metelev, V. Kuznetsov
{"title":"Copper Recovery from Water of Soryinskoye Tailing Pond","authors":"A. Lebed’, R. I. Verkhodanov, Z. A. Lebed, A. Metelev, V. Kuznetsov","doi":"10.18502/kms.v6i1.8052","DOIUrl":null,"url":null,"abstract":"The large volume of recycling waters from the Soryinskoye tailing pond (up to 1300 m3/h) offers interesting possibilities for processing concentrates despite the low copper content (5.2-16.4 mg/l). Sulfides precipitation is the most efficient method of heavy metal ions removal from water. In this study, a sulfur solution in sodium hydroxide was used as a sulfidizing agent for precipitation. Commercial liquid alkali (NaOH – 46) and commercial sulfur were the initial agents. Due to the concentrated alkali, dissolution could be carried out at 115-120∘С, which is higher than the melting point of sulfur. Stable solutions were obtained at a weight ratio of NaOH: S = 1: 1 and a sulfur concentration of 350 g/l. During the laboratory and scale-up laboratory tests, the optimal consumption of sulfidizing agent was determined (110% of the stoichiometry for the formation of Cu2S, and copper extraction into the precipitate from the solution was more than 90.0% with high selectivity towards Zn and Fe). An extended analysis of the composition of the sediment (x-ray fluorescence spectrometer SPECTRO XEPOS) obtained during pilot trials showed that the main elements are, %: sulfur 58.4; oxygen 16.2; copper 8.9; iron 5.7; calcium 4.7 and arsenic 3.8. The total fraction of impurity elements does not exceed 2.3%. This study assumes use of the product conditioning to obtain concentrate with increased copper content and sulfur return to sulfidation stage. \nKeywords: acid mine drainage, copper recovery, chemical treatment, sulfide precipitation","PeriodicalId":17908,"journal":{"name":"KnE Materials Science","volume":"144 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"KnE Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/kms.v6i1.8052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The large volume of recycling waters from the Soryinskoye tailing pond (up to 1300 m3/h) offers interesting possibilities for processing concentrates despite the low copper content (5.2-16.4 mg/l). Sulfides precipitation is the most efficient method of heavy metal ions removal from water. In this study, a sulfur solution in sodium hydroxide was used as a sulfidizing agent for precipitation. Commercial liquid alkali (NaOH – 46) and commercial sulfur were the initial agents. Due to the concentrated alkali, dissolution could be carried out at 115-120∘С, which is higher than the melting point of sulfur. Stable solutions were obtained at a weight ratio of NaOH: S = 1: 1 and a sulfur concentration of 350 g/l. During the laboratory and scale-up laboratory tests, the optimal consumption of sulfidizing agent was determined (110% of the stoichiometry for the formation of Cu2S, and copper extraction into the precipitate from the solution was more than 90.0% with high selectivity towards Zn and Fe). An extended analysis of the composition of the sediment (x-ray fluorescence spectrometer SPECTRO XEPOS) obtained during pilot trials showed that the main elements are, %: sulfur 58.4; oxygen 16.2; copper 8.9; iron 5.7; calcium 4.7 and arsenic 3.8. The total fraction of impurity elements does not exceed 2.3%. This study assumes use of the product conditioning to obtain concentrate with increased copper content and sulfur return to sulfidation stage.
Keywords: acid mine drainage, copper recovery, chemical treatment, sulfide precipitation