{"title":"ТМ ПОЛЯРИЗОВАННЫЕ ПОВЕРХНОСТНЫЕ ВОЛНЫ,РАСПРОСТРАНЯЮЩИЕСЯ ВДОЛЬ ПОВЕРХНОСТИ ФОТОРЕФРАКТИВНОГО КРИСТАЛЛА С НЕЛИНЕЙНЫМ САМОФОКУСИРУЮЩИМ ПОКРЫТИЕМ","authors":"S. Savotchenko","doi":"10.17308/kcmf.2019.21/1154","DOIUrl":null,"url":null,"abstract":"Рассмотрена модель композитной волноводной структуры, основанной на фоторефрактивном кристалле с диффузионным механизмом с нелинейным самофокусирующим покрытием. Показано, что вдоль такой структуры могут распространяться поверхностные волны необыкновенной поляризации. Определены характеристики таких волн. Установлена возможность увеличения или подавления поля на границе фоторефрактивного кристалла. \n \n \n \nREFERENCES \n \nStrudley T., Bruck R., Mills B., Muskens O. L. An ultrafast reconfi gurable nanophotonic switch using wavefront shaping of light in a nonlinear nanomaterial. Light: Science & Applications, 2014, v. 3, p. e207. https://doi.org/10.1038/lsa.2014.88. \nNaim Ben Ali. Narrow stop band microwave filters by using hybrid generalized quasi-periodic photonic crystals.Chinese J. of Phys., 2017, v. 55, pp. 2384–2392. https://doi.org/10.1016/j.cjph.2017.10.008 \nBettella G., Zamboni R., Pozza G., Zaltron A., Montevecchi C., Pierno M., Mistura G., Sada C., Gauthier-Manuel L., Chauvet M. LiNbO3 integrated system for opto-microfl uidic sensing. Sensors and Actuators B: Chem., 2019, v. 282, pp. 391–398. https://doi.org/10.1016/j.snb.2018.10.082. \nPetrov M. P., Stepanov S. I., Homenko A. V. Fotorefraktivnyekristally v kogerentnojoptike[Photorefrac tive crystals in coherent optics]. Saint Petersburg, Nauka Publ., 1992, 317 p. (in Russ.) \nBelyi V. N., Khilo N. A. Surface light waves at the border of a photorefractive crystal with a diffusiondrift nonlinearity mechanism.Tech. Phys. Lett., 1997, v. 23(12), pp. 31–36. (in Russ.) \nShandarov S. M., Shandarov E. S. Photorefractive slit waves.Tech. Phys. Lett., 1997, v. 23(15), pp. 30–35. (in Russ.) \nChetkin S. A., Akhmedzhanov I. M. Optical surface wave in a crystal with diffusion photorefractive nonlinearity.Quant. Electr., 2011, v. 41(11), pp. 980–985. (in Russ.) \nUsievich D. Kh., Nurligareev B. A., Sychugov V. A., Ivleva L. I. Combined waveguide on a photorefractive crystal.Quant. Electr., v. 41(11), pp. 924–928. (in Russ.) \nSavotchenko S. E. Nonlinear surface TM waves in a Kerr defocusing nonlinear slab sandwiched between photorefractive crystals.Solid State Communications, 2019. v. 296(7), pp. 32–36. https://doi.org/10.1016/j.ssc.2019.04.008. \nSavotchenko S. E.Effect of the Temperature on the Redistribution of an Energy Flux Carried by Surface Waves along the Interface between Crystals with Different Mechanisms of Formation of a Nonlinear Response. JETP Lett., 2019, v. 109(11), pp. 778–782. https://doi.org/10.1134/S0370274X19110109 \nSavotchenko S. E. Nonlinear surface waves at the interface of optical media with various mechanisms for inducing nonlinearity. JETP, 2019, v. 156(8), pp. 195–204. https://doi.org/10.1134/S0044451019080017. \n","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"194 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17308/kcmf.2019.21/1154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Рассмотрена модель композитной волноводной структуры, основанной на фоторефрактивном кристалле с диффузионным механизмом с нелинейным самофокусирующим покрытием. Показано, что вдоль такой структуры могут распространяться поверхностные волны необыкновенной поляризации. Определены характеристики таких волн. Установлена возможность увеличения или подавления поля на границе фоторефрактивного кристалла.
REFERENCES
Strudley T., Bruck R., Mills B., Muskens O. L. An ultrafast reconfi gurable nanophotonic switch using wavefront shaping of light in a nonlinear nanomaterial. Light: Science & Applications, 2014, v. 3, p. e207. https://doi.org/10.1038/lsa.2014.88.
Naim Ben Ali. Narrow stop band microwave filters by using hybrid generalized quasi-periodic photonic crystals.Chinese J. of Phys., 2017, v. 55, pp. 2384–2392. https://doi.org/10.1016/j.cjph.2017.10.008
Bettella G., Zamboni R., Pozza G., Zaltron A., Montevecchi C., Pierno M., Mistura G., Sada C., Gauthier-Manuel L., Chauvet M. LiNbO3 integrated system for opto-microfl uidic sensing. Sensors and Actuators B: Chem., 2019, v. 282, pp. 391–398. https://doi.org/10.1016/j.snb.2018.10.082.
Petrov M. P., Stepanov S. I., Homenko A. V. Fotorefraktivnyekristally v kogerentnojoptike[Photorefrac tive crystals in coherent optics]. Saint Petersburg, Nauka Publ., 1992, 317 p. (in Russ.)
Belyi V. N., Khilo N. A. Surface light waves at the border of a photorefractive crystal with a diffusiondrift nonlinearity mechanism.Tech. Phys. Lett., 1997, v. 23(12), pp. 31–36. (in Russ.)
Shandarov S. M., Shandarov E. S. Photorefractive slit waves.Tech. Phys. Lett., 1997, v. 23(15), pp. 30–35. (in Russ.)
Chetkin S. A., Akhmedzhanov I. M. Optical surface wave in a crystal with diffusion photorefractive nonlinearity.Quant. Electr., 2011, v. 41(11), pp. 980–985. (in Russ.)
Usievich D. Kh., Nurligareev B. A., Sychugov V. A., Ivleva L. I. Combined waveguide on a photorefractive crystal.Quant. Electr., v. 41(11), pp. 924–928. (in Russ.)
Savotchenko S. E. Nonlinear surface TM waves in a Kerr defocusing nonlinear slab sandwiched between photorefractive crystals.Solid State Communications, 2019. v. 296(7), pp. 32–36. https://doi.org/10.1016/j.ssc.2019.04.008.
Savotchenko S. E.Effect of the Temperature on the Redistribution of an Energy Flux Carried by Surface Waves along the Interface between Crystals with Different Mechanisms of Formation of a Nonlinear Response. JETP Lett., 2019, v. 109(11), pp. 778–782. https://doi.org/10.1134/S0370274X19110109
Savotchenko S. E. Nonlinear surface waves at the interface of optical media with various mechanisms for inducing nonlinearity. JETP, 2019, v. 156(8), pp. 195–204. https://doi.org/10.1134/S0044451019080017.