{"title":"Electrochemical corrosion behavior of Pb-free solders for die attachment","authors":"C. Tsai, Jenn-Ming Song, Yen‐Pei Fu","doi":"10.1109/IMPACT.2009.5382213","DOIUrl":null,"url":null,"abstract":"This study aimed to investigate the electrochemical corrosion behavior of the potential Pb-free solders, Bi-11wt%Ag and Zn-40wt%Sn, in 3.5% NaCl solution using the potentiodynamic polarization method with the scanning range from -2000mV to +2000mV. Pb-5wt%Sn alloy was also examined for comparison. Experimental results show that the corrosion potential (Ecorr) decreased in the decreasing order was Bi-11Ag, Pb-5Sn, and Zn-40Sn. Zn-40Sn exhibited the highest current density (Icorr), and that for Pb-5Sn was the lowest. The Pb-5Sn samples had a much extended passive region compared to Bi-11Ag, while the Zn-40Sn samples showed no passive behavior within the scanning range. According to the XPS and XRD data, the corrosion products were main PbCl2 and PbO for Pb-5Sn, BiOCl, AgCl2, and Bi2O3 for Bi-11Ag. Zn rich phases (ZnO and ZnCl2) were found on the polarized surface of Zn-40Sn, and tin oxides were detected at the subsurface.","PeriodicalId":6410,"journal":{"name":"2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference","volume":"41 1","pages":"448-451"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMPACT.2009.5382213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to investigate the electrochemical corrosion behavior of the potential Pb-free solders, Bi-11wt%Ag and Zn-40wt%Sn, in 3.5% NaCl solution using the potentiodynamic polarization method with the scanning range from -2000mV to +2000mV. Pb-5wt%Sn alloy was also examined for comparison. Experimental results show that the corrosion potential (Ecorr) decreased in the decreasing order was Bi-11Ag, Pb-5Sn, and Zn-40Sn. Zn-40Sn exhibited the highest current density (Icorr), and that for Pb-5Sn was the lowest. The Pb-5Sn samples had a much extended passive region compared to Bi-11Ag, while the Zn-40Sn samples showed no passive behavior within the scanning range. According to the XPS and XRD data, the corrosion products were main PbCl2 and PbO for Pb-5Sn, BiOCl, AgCl2, and Bi2O3 for Bi-11Ag. Zn rich phases (ZnO and ZnCl2) were found on the polarized surface of Zn-40Sn, and tin oxides were detected at the subsurface.