{"title":"The Infinite limit of random permutations avoiding patterns of length three","authors":"R. Pinsky","doi":"10.1017/S0963548319000270","DOIUrl":null,"url":null,"abstract":"Abstract For $$\\tau \\in {S_3}$$, let $$\\mu _n^\\tau $$ denote the uniformly random probability measure on the set of $$\\tau $$-avoiding permutations in $${S_n}$$. Let $${\\mathbb {N}^*} = {\\mathbb {N}} \\cup \\{ \\infty \\} $$ with an appropriate metric and denote by $$S({\\mathbb{N}},{\\mathbb{N}^*})$$ the compact metric space consisting of functions $$\\sigma {\\rm{ = }}\\{ {\\sigma _i}\\} _{i = 1}^\\infty {\\rm{ }}$$ from $$\\mathbb {N}$$ to $${\\mathbb {N}^ * }$$ which are injections when restricted to $${\\sigma ^{ - 1}}(\\mathbb {N})$$; that is, if $${\\sigma _i}{\\rm{ = }}{\\sigma _j}$$, $$i \\ne j$$, then $${\\sigma _i} = \\infty $$. Extending permutations $$\\sigma \\in {S_n}$$ by defining $${\\sigma _j} = j$$, for $$j \\gt n$$, we have $${S_n} \\subset S({\\mathbb{N}},{{\\mathbb{N}}^*})$$. For each $$\\tau \\in {S_3}$$, we study the limiting behaviour of the measures $$\\{ \\mu _n^\\tau \\} _{n = 1}^\\infty $$ on $$S({\\mathbb{N}},{\\mathbb{N}^*})$$. We obtain partial results for the permutation $$\\tau = 321$$ and complete results for the other five permutations $$\\tau \\in {S_3}$$.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":"140 1","pages":"137 - 152"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0963548319000270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract For $$\tau \in {S_3}$$, let $$\mu _n^\tau $$ denote the uniformly random probability measure on the set of $$\tau $$-avoiding permutations in $${S_n}$$. Let $${\mathbb {N}^*} = {\mathbb {N}} \cup \{ \infty \} $$ with an appropriate metric and denote by $$S({\mathbb{N}},{\mathbb{N}^*})$$ the compact metric space consisting of functions $$\sigma {\rm{ = }}\{ {\sigma _i}\} _{i = 1}^\infty {\rm{ }}$$ from $$\mathbb {N}$$ to $${\mathbb {N}^ * }$$ which are injections when restricted to $${\sigma ^{ - 1}}(\mathbb {N})$$; that is, if $${\sigma _i}{\rm{ = }}{\sigma _j}$$, $$i \ne j$$, then $${\sigma _i} = \infty $$. Extending permutations $$\sigma \in {S_n}$$ by defining $${\sigma _j} = j$$, for $$j \gt n$$, we have $${S_n} \subset S({\mathbb{N}},{{\mathbb{N}}^*})$$. For each $$\tau \in {S_3}$$, we study the limiting behaviour of the measures $$\{ \mu _n^\tau \} _{n = 1}^\infty $$ on $$S({\mathbb{N}},{\mathbb{N}^*})$$. We obtain partial results for the permutation $$\tau = 321$$ and complete results for the other five permutations $$\tau \in {S_3}$$.