Efficient Approach to Detect Epileptic Seizure using Machine Learning Models for Modern Healthcare System

Tanbin Islam Rohan, Md. Salah Uddin Yusuf, Monira Islam, Shidhartho Roy
{"title":"Efficient Approach to Detect Epileptic Seizure using Machine Learning Models for Modern Healthcare System","authors":"Tanbin Islam Rohan, Md. Salah Uddin Yusuf, Monira Islam, Shidhartho Roy","doi":"10.1109/TENSYMP50017.2020.9230731","DOIUrl":null,"url":null,"abstract":"Epileptic seizure is one of the common neurological disorder now a day. But this is curable if it can be detected in the early stage. So, this research become a necessity in the early prediction of epileptic seizure. A complete and reliable system can classify the epileptic seizure patients and the states of epileptic seizure. This research explores a supervised machine learning and deep learning model for the classification of epileptic seizure patients from the Epileptic Seizure dataset of UCI machine learning repository. The dataset has 11,500 instances; every information contains 178 attributes. XGBoost is used for the Machine learning approach and ANN is used for Deep learning approach. The proposed ANN algorithm has the improved accuracy and accurately classified the epileptic seizure class patients. 10-fold cross validation is used for the validation purpose. XGBoost acquires 96.6% test accuracy and ANN acquires 98.26% test accuracy. The proposed Deep Learning approach has out-performed the conventional epileptic seizure classifier algorithms. Additionally, the Deep learning model enhances the performance of epileptic seizure detection.","PeriodicalId":6721,"journal":{"name":"2020 IEEE Region 10 Symposium (TENSYMP)","volume":"19 1","pages":"1783-1786"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENSYMP50017.2020.9230731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Epileptic seizure is one of the common neurological disorder now a day. But this is curable if it can be detected in the early stage. So, this research become a necessity in the early prediction of epileptic seizure. A complete and reliable system can classify the epileptic seizure patients and the states of epileptic seizure. This research explores a supervised machine learning and deep learning model for the classification of epileptic seizure patients from the Epileptic Seizure dataset of UCI machine learning repository. The dataset has 11,500 instances; every information contains 178 attributes. XGBoost is used for the Machine learning approach and ANN is used for Deep learning approach. The proposed ANN algorithm has the improved accuracy and accurately classified the epileptic seizure class patients. 10-fold cross validation is used for the validation purpose. XGBoost acquires 96.6% test accuracy and ANN acquires 98.26% test accuracy. The proposed Deep Learning approach has out-performed the conventional epileptic seizure classifier algorithms. Additionally, the Deep learning model enhances the performance of epileptic seizure detection.
现代医疗系统中使用机器学习模型检测癫痫发作的有效方法
癫痫发作是当今常见的神经系统疾病之一。但如果能在早期发现,这是可以治愈的。因此,这项研究对于癫痫发作的早期预测是必要的。一个完整可靠的系统可以对癫痫发作患者和癫痫发作状态进行分类。本研究从UCI机器学习存储库的癫痫发作数据集中,探索了一种监督式机器学习和深度学习模型,用于癫痫发作患者的分类。数据集有11500个实例;每个信息包含178个属性。XGBoost用于机器学习方法,ANN用于深度学习方法。所提出的人工神经网络算法提高了准确率,能够准确地对癫痫发作患者进行分类。10倍交叉验证用于验证目的。XGBoost获得96.6%的测试精度,ANN获得98.26%的测试精度。提出的深度学习方法优于传统的癫痫发作分类器算法。此外,深度学习模型提高了癫痫发作检测的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信