An isothermal, non-enzymatic, and dual-amplified fluorescent sensor for highly sensitive DNA detection

IF 3.6 3区 化学 Q2 CHEMISTRY, ANALYTICAL
I. Iwe, Zhigang Li
{"title":"An isothermal, non-enzymatic, and dual-amplified fluorescent sensor for highly sensitive DNA detection","authors":"I. Iwe, Zhigang Li","doi":"10.1515/revac-2021-0140","DOIUrl":null,"url":null,"abstract":"Abstract Sensitive DNA assays are of importance in life science and biomedical engineering, but they are heavily dependent on thermal cycling programs or enzyme-assisted schemes, which require the utilization of bulky devices and costly reagents. To circumvent such requirements, we developed an isothermal enzyme-free DNA sensing method with dual-stage signal amplification ability based on the coupling use of catalytic hairpin assembly (CHA) and Mg2+-dependent deoxyribozyme (DNAzyme). In this study, the sensing system involves a set of hairpin DNA probes for CHA (ensuring the first stage of signal amplification) as well as ribonucleobase-modified molecular beacons that serve as activatable substrates for DNAzymes (warranting the second stage of signal amplification). An experimentally determined detection limit of about 0.5 pM is achieved with a good linear range from 0.5 to 10 pM. The results from spiked fetal bovine serum samples further confirm the reliability for practical applications. The non-thermal cycling, enzyme-free, and dual-amplified features make it a powerful sensing tool for effective nucleic acid assay in a variety of biomedical applications.","PeriodicalId":21090,"journal":{"name":"Reviews in Analytical Chemistry","volume":"30 1","pages":"312 - 322"},"PeriodicalIF":3.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/revac-2021-0140","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Sensitive DNA assays are of importance in life science and biomedical engineering, but they are heavily dependent on thermal cycling programs or enzyme-assisted schemes, which require the utilization of bulky devices and costly reagents. To circumvent such requirements, we developed an isothermal enzyme-free DNA sensing method with dual-stage signal amplification ability based on the coupling use of catalytic hairpin assembly (CHA) and Mg2+-dependent deoxyribozyme (DNAzyme). In this study, the sensing system involves a set of hairpin DNA probes for CHA (ensuring the first stage of signal amplification) as well as ribonucleobase-modified molecular beacons that serve as activatable substrates for DNAzymes (warranting the second stage of signal amplification). An experimentally determined detection limit of about 0.5 pM is achieved with a good linear range from 0.5 to 10 pM. The results from spiked fetal bovine serum samples further confirm the reliability for practical applications. The non-thermal cycling, enzyme-free, and dual-amplified features make it a powerful sensing tool for effective nucleic acid assay in a variety of biomedical applications.
等温,非酶,双扩增荧光传感器,用于高灵敏度的DNA检测
敏感DNA检测在生命科学和生物医学工程中具有重要意义,但它们严重依赖于热循环程序或酶辅助方案,这需要使用笨重的设备和昂贵的试剂。为了规避这些要求,我们开发了一种基于催化发夹组装(CHA)和Mg2+依赖性脱氧核酶(DNAzyme)耦合使用的具有双级信号放大能力的等温无酶DNA传感方法。在本研究中,传感系统包括一组用于CHA的发夹DNA探针(确保第一阶段的信号放大),以及作为DNAzymes可激活底物的核糖核碱基修饰的分子信标(保证第二阶段的信号放大)。实验确定的检测限约为0.5 pM,在0.5至10 pM之间具有良好的线性范围。加标胎牛血清样品的结果进一步证实了该方法在实际应用中的可靠性。非热循环,无酶,双放大的特点,使其成为一个强大的传感工具,有效的核酸分析在各种生物医学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reviews in Analytical Chemistry
Reviews in Analytical Chemistry 化学-分析化学
CiteScore
7.50
自引率
0.00%
发文量
15
审稿时长
>12 weeks
期刊介绍: Reviews in Analytical Chemistry publishes authoritative reviews by leading experts in the dynamic field of chemical analysis. The subjects can encompass all branches of modern analytical chemistry such as spectroscopy, chromatography, mass spectrometry, electrochemistry and trace analysis and their applications to areas such as environmental control, pharmaceutical industry, automation and other relevant areas. Review articles bring the expert up to date in a concise manner and provide researchers an overview of new techniques and methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信