F2 Laser-Induced Micro-Reticulated Structural Changes of Amorphous Carbon Thin Films

IF 1.5 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
M. Okoshi
{"title":"F2 Laser-Induced Micro-Reticulated Structural Changes of Amorphous Carbon Thin Films","authors":"M. Okoshi","doi":"10.3390/micro3020041","DOIUrl":null,"url":null,"abstract":"Micro/nanoprocessing of materials using lasers is currently an active research topic. In that research, the choice of the laser to be used is critical, but the F2 laser, which has the shortest wavelength (157 nm) among commercially available lasers, has few research compared to its potential. In this paper, we discovered a new photochemical processing by using an F2 laser to irradiate an amorphous carbon thin film. The short wavelength and high photon energy of the F2 laser can photoexcite the surface of the thin film at high density and generate active oxygen atoms O(1D) by photodecomposition of atmospheric oxygen molecules. As a result, the optical change of the amorphous carbon thin film was induced without thickness reduction, and a micron-sized network-like, reticulated structural change was formed in the thin film surface after one month at the latest. The formed micron-sized reticulated structure was relatively swollen, and a graphitization occurred in the structure, observed by Raman spectroscopy. However, the structure was not observed when the laser irradiated area became smaller. This work has made it possible to form a micron-sized reticulated structure including carbon nanocrystals in an amorphous carbon, which is expected to further expand the applications of carbon materials.","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":"57 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro & Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/micro3020041","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Micro/nanoprocessing of materials using lasers is currently an active research topic. In that research, the choice of the laser to be used is critical, but the F2 laser, which has the shortest wavelength (157 nm) among commercially available lasers, has few research compared to its potential. In this paper, we discovered a new photochemical processing by using an F2 laser to irradiate an amorphous carbon thin film. The short wavelength and high photon energy of the F2 laser can photoexcite the surface of the thin film at high density and generate active oxygen atoms O(1D) by photodecomposition of atmospheric oxygen molecules. As a result, the optical change of the amorphous carbon thin film was induced without thickness reduction, and a micron-sized network-like, reticulated structural change was formed in the thin film surface after one month at the latest. The formed micron-sized reticulated structure was relatively swollen, and a graphitization occurred in the structure, observed by Raman spectroscopy. However, the structure was not observed when the laser irradiated area became smaller. This work has made it possible to form a micron-sized reticulated structure including carbon nanocrystals in an amorphous carbon, which is expected to further expand the applications of carbon materials.
激光诱导非晶碳薄膜微网状结构的变化
利用激光对材料进行微纳加工是目前一个活跃的研究课题。在这项研究中,使用的激光器的选择是至关重要的,但F2激光器在商用激光器中具有最短的波长(157纳米),与其潜力相比,很少有研究。本文利用F2激光照射非晶碳薄膜,发现了一种新的光化学处理方法。F2激光波长短、光子能量高,能对薄膜表面进行高密度光激发,并通过大气氧分子的光分解生成活性氧原子O(1D)。结果表明,在不减小薄膜厚度的情况下,诱导了非晶碳薄膜的光学变化,薄膜表面最迟在1个月后形成微米级的网状网状结构变化。通过拉曼光谱观察,形成的微米级网状结构相对膨胀,结构中出现石墨化现象。然而,当激光照射面积变小时,没有观察到这种结构。这项工作使得在非晶碳中形成包括碳纳米晶体在内的微米级网状结构成为可能,有望进一步拓展碳材料的应用领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Micro & Nano Letters
Micro & Nano Letters 工程技术-材料科学:综合
CiteScore
3.30
自引率
0.00%
发文量
58
审稿时长
2.8 months
期刊介绍: Micro & Nano Letters offers express online publication of short research papers containing the latest advances in miniature and ultraminiature structures and systems. With an average of six weeks to decision, and publication online in advance of each issue, Micro & Nano Letters offers a rapid route for the international dissemination of high quality research findings from both the micro and nano communities. Scope Micro & Nano Letters offers express online publication of short research papers containing the latest advances in micro and nano-scale science, engineering and technology, with at least one dimension ranging from micrometers to nanometers. Micro & Nano Letters offers readers high-quality original research from both the micro and nano communities, and the materials and devices communities. Bridging this gap between materials science and micro and nano-scale devices, Micro & Nano Letters addresses issues in the disciplines of engineering, physical, chemical, and biological science. It places particular emphasis on cross-disciplinary activities and applications. Typical topics include: Micro and nanostructures for the device communities MEMS and NEMS Modelling, simulation and realisation of micro and nanoscale structures, devices and systems, with comparisons to experimental data Synthesis and processing Micro and nano-photonics Molecular machines, circuits and self-assembly Organic and inorganic micro and nanostructures Micro and nano-fluidics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信