{"title":"Classification and Comparison of Crack and Dent Defects in a Metal Pipe Subjected to Variable Amplitude Loading","authors":"Z. Mighouar, H. Khatib, L. Zahiri, K. Mansouri","doi":"10.15282/ijame.19.1.2022.20.0739","DOIUrl":null,"url":null,"abstract":"Pipelines are commonly used to transport energy over long distances. If this structure is subjected to an internal pressure of variable amplitude loading, such as water hammer waves, the structural damage caused by the presence of a defect can be exacerbated. Previous research by the authors resulted in the development of finite element models to evaluate crack and dent defects separately. Each model was used to compare and classify defects in their respective categories based on their nocivity in a metal pipe subjected to internal pressure. The primary objective of this paper is to compare the severity of various defect categories on the same scale. A numerical damage assessment model that considers the interaction effect, as well as the loading history, is used to achieve this goal. It takes the output of the two finite element models, as well as the pressure spectrum caused by the water hammer, as inputs. This model is used to analyze the effect of key parameters that influence the severity of the defects, as well as to compare and classify the various types of dent defects with the various types of crack defects found in pipes subjected to variable amplitude loading.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"7 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.19.1.2022.20.0739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Pipelines are commonly used to transport energy over long distances. If this structure is subjected to an internal pressure of variable amplitude loading, such as water hammer waves, the structural damage caused by the presence of a defect can be exacerbated. Previous research by the authors resulted in the development of finite element models to evaluate crack and dent defects separately. Each model was used to compare and classify defects in their respective categories based on their nocivity in a metal pipe subjected to internal pressure. The primary objective of this paper is to compare the severity of various defect categories on the same scale. A numerical damage assessment model that considers the interaction effect, as well as the loading history, is used to achieve this goal. It takes the output of the two finite element models, as well as the pressure spectrum caused by the water hammer, as inputs. This model is used to analyze the effect of key parameters that influence the severity of the defects, as well as to compare and classify the various types of dent defects with the various types of crack defects found in pipes subjected to variable amplitude loading.
期刊介绍:
The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.