Image-based UAV localization using interval methods

Ide-Flore Kenmogne, Vincent Drevelle, É. Marchand
{"title":"Image-based UAV localization using interval methods","authors":"Ide-Flore Kenmogne, Vincent Drevelle, É. Marchand","doi":"10.1109/iros.2017.8206420","DOIUrl":null,"url":null,"abstract":"This paper proposes an image-based localization method that enables to estimate a bounded domain of the pose of an unmanned aerial vehicle (UAV) from uncertain measurements of known landmarks in the image. The approach computes a domain that should contain the actual robot pose, assuming bounded image measurement errors and landmark position uncertainty. It relies on interval analysis and constraint propagation techniques to rigorously back-propagate the errors through the non-linear observation model. Attitude information from onboard sensors is merged with image observations to reduce the pose uncertainty domain, along with prediction based on velocity measurements. As tracking landmarks in the image is prone to errors, the proposed method also enable fault detection from measurement inconsistencies. This method is tested using a quadcopter UAV with an onboard camera.","PeriodicalId":6658,"journal":{"name":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"60 2 1","pages":"5285-5291"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iros.2017.8206420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper proposes an image-based localization method that enables to estimate a bounded domain of the pose of an unmanned aerial vehicle (UAV) from uncertain measurements of known landmarks in the image. The approach computes a domain that should contain the actual robot pose, assuming bounded image measurement errors and landmark position uncertainty. It relies on interval analysis and constraint propagation techniques to rigorously back-propagate the errors through the non-linear observation model. Attitude information from onboard sensors is merged with image observations to reduce the pose uncertainty domain, along with prediction based on velocity measurements. As tracking landmarks in the image is prone to errors, the proposed method also enable fault detection from measurement inconsistencies. This method is tested using a quadcopter UAV with an onboard camera.
基于图像的无人机区间定位方法
本文提出了一种基于图像的定位方法,该方法能够从图像中已知地标的不确定测量值中估计出无人机姿态的有界域。该方法计算一个应该包含实际机器人姿态的域,假设有界图像测量误差和地标位置不确定性。利用区间分析和约束传播技术,通过非线性观测模型对误差进行严格的反向传播。来自机载传感器的姿态信息与图像观测相结合,以减少姿态不确定性域,以及基于速度测量的预测。由于跟踪图像中的地标容易产生错误,该方法还可以从测量不一致中进行故障检测。这种方法是测试使用四轴无人机与机载摄像机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信