Mary C. Hidde, K. Lyden, J. Broussard, Kim Henry, Julia Sharp, Elizabeth A Thomas, C. Rynders, H. Leach
{"title":"Comparison of activPAL and Actiwatch for Estimations of Time in Bed in Free-Living Adults","authors":"Mary C. Hidde, K. Lyden, J. Broussard, Kim Henry, Julia Sharp, Elizabeth A Thomas, C. Rynders, H. Leach","doi":"10.1123/jmpb.2021-0047","DOIUrl":null,"url":null,"abstract":"Introduction: Patterns of physical activity (PA) and time in bed (TIB) across the 24-hr cycle have important implications for many health outcomes; therefore, wearable accelerometers are often implemented in behavioral research to measure free-living PA and TIB. Two accelerometers, the activPAL and Actiwatch, are common accelerometers for measuring PA (activPAL) and TIB (Actiwatch), respectively. Both accelerometers have the capacity to measure TIB, but the degree to which these accelerometers agree is not clear. Therefore, this study compared estimates of TIB between activPAL and the Actiwatch accelerometers. Methods: Participants (mean ± SDage = 39.8 ± 7.6 years) with overweight or obesity (N = 83) wore an activPAL and Actiwatch continuously for 7 days, 24 hr per day. TIB was assessed using manufacturer-specific algorithms. Repeated-measures mixed-effect models and Bland–Altman plots were used to compare the activPAL and Actiwatch TIB estimates. Results: Statistical differences between TIB assessed by activPAL versus Actiwatch (p < .001) were observed. There was not a significant interaction between accelerometer and day of wear (p = .87). The difference in TIB between accelerometers ranged from −72.9 ± 15.7 min (Day 7) to −98.6 ± 14.5 min (Day 3), with the Actiwatch consistently estimating longer TIB compared with the activPAL. Conclusion: Data generated by the activPAL and Actiwatch accelerometers resulted in divergent estimates of TIB. Future studies should continue to explore the validity of activity monitoring accelerometers for estimating TIB.","PeriodicalId":73572,"journal":{"name":"Journal for the measurement of physical behaviour","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for the measurement of physical behaviour","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1123/jmpb.2021-0047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Introduction: Patterns of physical activity (PA) and time in bed (TIB) across the 24-hr cycle have important implications for many health outcomes; therefore, wearable accelerometers are often implemented in behavioral research to measure free-living PA and TIB. Two accelerometers, the activPAL and Actiwatch, are common accelerometers for measuring PA (activPAL) and TIB (Actiwatch), respectively. Both accelerometers have the capacity to measure TIB, but the degree to which these accelerometers agree is not clear. Therefore, this study compared estimates of TIB between activPAL and the Actiwatch accelerometers. Methods: Participants (mean ± SDage = 39.8 ± 7.6 years) with overweight or obesity (N = 83) wore an activPAL and Actiwatch continuously for 7 days, 24 hr per day. TIB was assessed using manufacturer-specific algorithms. Repeated-measures mixed-effect models and Bland–Altman plots were used to compare the activPAL and Actiwatch TIB estimates. Results: Statistical differences between TIB assessed by activPAL versus Actiwatch (p < .001) were observed. There was not a significant interaction between accelerometer and day of wear (p = .87). The difference in TIB between accelerometers ranged from −72.9 ± 15.7 min (Day 7) to −98.6 ± 14.5 min (Day 3), with the Actiwatch consistently estimating longer TIB compared with the activPAL. Conclusion: Data generated by the activPAL and Actiwatch accelerometers resulted in divergent estimates of TIB. Future studies should continue to explore the validity of activity monitoring accelerometers for estimating TIB.