Dual-Channel Domain Adaptation Model

Chi Yang, Bo Zhou, Xiaohui Hu, Jianying Chen, Qianhua Cai, Yun Xue
{"title":"Dual-Channel Domain Adaptation Model","authors":"Chi Yang, Bo Zhou, Xiaohui Hu, Jianying Chen, Qianhua Cai, Yun Xue","doi":"10.1145/3498851.3498984","DOIUrl":null,"url":null,"abstract":"Document-level cross-domain sentiment analysis aims to leverage useful information in the source domain to help infer document-level sentiment on the target domain. The existing cross-domain sentiment analysis methods neglect complex syntactic structure and diversified semantic information of document text in different domains. Therefore, we proposed a novel dual-channel domain adaptation model (DCDA) for document-level cross-domain sentiment analysis. It consists of feature extraction module and domain adaptation module. The dual-channel feature extraction module adopts hierarchical attention structure to extract context channel features at word level and sentence level. In addition, different attention strategies are implemented at different levels, which enables accurate assigning of the attention weight. GAT is used to extract syntactic channel characteristics of documents. We adopt adversarial mutual learning in the domain adaptation module. It learns the domain-invariant features by using adversarial network learning, and makes full use of the information of the target domain to improve the classification effect by mutual learning. Experiments on multiple public datasets demonstrate the effectiveness of DCDA.","PeriodicalId":89230,"journal":{"name":"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"333 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3498851.3498984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Document-level cross-domain sentiment analysis aims to leverage useful information in the source domain to help infer document-level sentiment on the target domain. The existing cross-domain sentiment analysis methods neglect complex syntactic structure and diversified semantic information of document text in different domains. Therefore, we proposed a novel dual-channel domain adaptation model (DCDA) for document-level cross-domain sentiment analysis. It consists of feature extraction module and domain adaptation module. The dual-channel feature extraction module adopts hierarchical attention structure to extract context channel features at word level and sentence level. In addition, different attention strategies are implemented at different levels, which enables accurate assigning of the attention weight. GAT is used to extract syntactic channel characteristics of documents. We adopt adversarial mutual learning in the domain adaptation module. It learns the domain-invariant features by using adversarial network learning, and makes full use of the information of the target domain to improve the classification effect by mutual learning. Experiments on multiple public datasets demonstrate the effectiveness of DCDA.
双通道域适应模型
文档级跨领域情感分析旨在利用源领域中的有用信息来帮助推断目标领域的文档级情感。现有的跨领域情感分析方法忽略了不同领域文档文本复杂的句法结构和语义信息的多样性。为此,我们提出了一种新的双通道域自适应模型(DCDA)用于文档级跨域情感分析。它由特征提取模块和领域自适应模块组成。双通道特征提取模块采用分层注意结构提取词级和句子级语境通道特征。此外,在不同的层次上实施不同的注意策略,可以准确地分配注意权重。GAT用于提取文档的语法通道特征。在领域自适应模块中采用对抗性互学习。它利用对抗网络学习的方法学习域不变特征,并充分利用目标域的信息,通过相互学习来提高分类效果。在多个公共数据集上的实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信