Nowcasting the Spanish Economy Using Very High Frequency Tax Data

Ángel Cuevas, Ramiro Ledo, Enrique M. Quilis
{"title":"Nowcasting the Spanish Economy Using Very High Frequency Tax Data","authors":"Ángel Cuevas, Ramiro Ledo, Enrique M. Quilis","doi":"10.2139/ssrn.3589467","DOIUrl":null,"url":null,"abstract":"We present a short-term forecasting model based on tax data. The model combines daily information from the Immediate Supply of Information System for VAT declaration forms, with monthly indicators derived from tax data. The model uses the GDP as a macroeconomic synthesis. The model combines signal extraction and forecasting at the daily frequency, by means of an unobserved components model, with a mixed frequency (monthly-quarterly) dynamic factor analysis for GDP now-casting and forecasting. The daily information, plus the flexibility and efficiency of the factor models, allows a permanently updated monitoring of the short-term economic conditions of the Spanish economy.","PeriodicalId":18164,"journal":{"name":"Macroeconomics: National Income & Product Accounts eJournal","volume":"193 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macroeconomics: National Income & Product Accounts eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3589467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a short-term forecasting model based on tax data. The model combines daily information from the Immediate Supply of Information System for VAT declaration forms, with monthly indicators derived from tax data. The model uses the GDP as a macroeconomic synthesis. The model combines signal extraction and forecasting at the daily frequency, by means of an unobserved components model, with a mixed frequency (monthly-quarterly) dynamic factor analysis for GDP now-casting and forecasting. The daily information, plus the flexibility and efficiency of the factor models, allows a permanently updated monitoring of the short-term economic conditions of the Spanish economy.
利用甚高频税收数据预测西班牙经济
我们提出了一个基于税收数据的短期预测模型。该模型结合了来自增值税申报表即时信息系统的每日信息,以及来自税务数据的月度指标。该模型使用GDP作为宏观经济综合指标。该模型结合了每日频率的信号提取和预测,通过一个未观察到的成分模型,与混合频率(月-季度)动态因素分析的GDP现在铸造和预测。每日信息,加上因素模型的灵活性和效率,允许对西班牙经济的短期经济状况进行永久更新的监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信