Mapping Regional Landscape by Using OpenstreetMap (OSM)

IF 1.3 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Di Yang
{"title":"Mapping Regional Landscape by Using OpenstreetMap (OSM)","authors":"Di Yang","doi":"10.4018/978-1-5225-7033-2.ch033","DOIUrl":null,"url":null,"abstract":"A forest patterns map over a large extent at high spatial resolution is a heavily computation task but is critical to most regions. There are two major difficulties in generating the classification maps at regional scale: large training points sets and expensive computation cost in classifier modelling. As one of the most well-known Volunteered Geographic Information (VGI) initiatives, OpenstreetMap contributes not only on road network distributions, but the potential of justify land cover and land use. Google Earth Engine is a platform designed for cloud-based mapping with a strong computing power. In this study, we proposed a new approach to generating forest cover map and quantifying road-caused forest fragmentations by using OpenstreetMap in conjunction with remote sensing dataset stored in Google Earth Engine. Additionally, the landscape metrics produced after incorporating OpenStreetMap (OSM) with the forest spatial pattern layers from our output indicated significant levels of forest fragmentation in Yucatan peninsula.","PeriodicalId":54004,"journal":{"name":"International Journal of Agricultural and Environmental Information Systems","volume":"93 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Agricultural and Environmental Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-7033-2.ch033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

A forest patterns map over a large extent at high spatial resolution is a heavily computation task but is critical to most regions. There are two major difficulties in generating the classification maps at regional scale: large training points sets and expensive computation cost in classifier modelling. As one of the most well-known Volunteered Geographic Information (VGI) initiatives, OpenstreetMap contributes not only on road network distributions, but the potential of justify land cover and land use. Google Earth Engine is a platform designed for cloud-based mapping with a strong computing power. In this study, we proposed a new approach to generating forest cover map and quantifying road-caused forest fragmentations by using OpenstreetMap in conjunction with remote sensing dataset stored in Google Earth Engine. Additionally, the landscape metrics produced after incorporating OpenStreetMap (OSM) with the forest spatial pattern layers from our output indicated significant levels of forest fragmentation in Yucatan peninsula.
基于OpenstreetMap (OSM)的区域景观制图
大范围的高空间分辨率森林格局图是一项繁重的计算任务,但对大多数地区来说是至关重要的。在区域尺度上生成分类图存在两个主要困难:训练点集大和分类器建模计算成本高。作为最著名的志愿地理信息(VGI)倡议之一,OpenstreetMap不仅有助于道路网络分布,还有助于证明土地覆盖和土地利用的合理性。谷歌地球引擎是一个为基于云的地图设计的平台,具有强大的计算能力。在这项研究中,我们提出了一种利用OpenstreetMap与Google Earth Engine中存储的遥感数据集相结合的方法来生成森林覆盖地图和量化道路造成的森林碎片化。此外,将OpenStreetMap (OSM)与我们输出的森林空间格局层结合后产生的景观指标表明,尤卡坦半岛的森林破碎化程度很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Agricultural and Environmental Information Systems
International Journal of Agricultural and Environmental Information Systems COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
6.70
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信