{"title":"A 3D-printed phantom twin and multi-transducer holder for dynamic anatomical ultrasonography of the lower limb","authors":"C. Langton, Antonio Grimm, D. Lloyd, L. Frossard","doi":"10.2217/3dp-2023-0004","DOIUrl":null,"url":null,"abstract":"We aim to improve the residuum health of individuals suffering from lower-limb loss through ‘digital twin’ computational simulations for the creation of optimized 3D-printed prosthetic attachments. Our objective is to utilize 4D tracking data of various tissue interfaces as a primary input into the digital twin. Dynamic anatomical ultrasonography (DAU) is a novel technique in which synchronized individual transducers are positioned at known locations utilizing a 3D-printed holder. Pulse-echo ultrasound data are recorded and subsequently analyzed, providing plots of tissue interface depths versus recording time. For the scientific validation of the DAU technique, a bespoke 3D-printed phantom twin has been created incorporating replica compartments of soft-tissue interfaces and bone tissue of a healthy thigh. To demonstrate its utility, a preliminary experiment was performed in which the phantom twin was positioned within the DAU device and the replica bone manually traversed randomly; subsequent DAU analysis provided a plot of interface depth versus recording time.","PeriodicalId":73578,"journal":{"name":"Journal of 3D printing in medicine","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of 3D printing in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2217/3dp-2023-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We aim to improve the residuum health of individuals suffering from lower-limb loss through ‘digital twin’ computational simulations for the creation of optimized 3D-printed prosthetic attachments. Our objective is to utilize 4D tracking data of various tissue interfaces as a primary input into the digital twin. Dynamic anatomical ultrasonography (DAU) is a novel technique in which synchronized individual transducers are positioned at known locations utilizing a 3D-printed holder. Pulse-echo ultrasound data are recorded and subsequently analyzed, providing plots of tissue interface depths versus recording time. For the scientific validation of the DAU technique, a bespoke 3D-printed phantom twin has been created incorporating replica compartments of soft-tissue interfaces and bone tissue of a healthy thigh. To demonstrate its utility, a preliminary experiment was performed in which the phantom twin was positioned within the DAU device and the replica bone manually traversed randomly; subsequent DAU analysis provided a plot of interface depth versus recording time.