A Methodology for Evidence-Based Data-Driven Decision Support in Policymaking

Daniel Guzman Vargas, S. Gautama
{"title":"A Methodology for Evidence-Based Data-Driven Decision Support in Policymaking","authors":"Daniel Guzman Vargas, S. Gautama","doi":"10.1109/ICSGSC52434.2021.9490448","DOIUrl":null,"url":null,"abstract":"Policymakers have the crucial task to develop innovative solutions to increasingly complex policy problems - sometimes referred to as ‘wicked’ problems - that lack the sense of clarity that most of the problems in science or engineering have, where a problem statement can be clearly defined. A DSS appropriate for handling ‘wicked’ problems in policymaking should help decision-makers cope with the problem's complexity, facilitate the assessing of multiple alternatives, and favor a discussion towards a common agenda. Such DSS could promote institutional efficiency and strengthen institutional integrity. Considering such requirements, we develop a methodology for the systematic exploration of the problem's solution space using expert knowledge. The application of the methodology in a specific use case suggests the methodology could be applied in a DSS for the identification of patterns and trends in policy-relevant data, the identification of possible policy configurations, the drafting of alternative scenarios based on the possible configurations, and institutional efficiency in terms of time and resources needed to formulate a solution to the policy problem.","PeriodicalId":66748,"journal":{"name":"智能电网(汉斯)","volume":"10 5 1","pages":"151-159"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能电网(汉斯)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/ICSGSC52434.2021.9490448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Policymakers have the crucial task to develop innovative solutions to increasingly complex policy problems - sometimes referred to as ‘wicked’ problems - that lack the sense of clarity that most of the problems in science or engineering have, where a problem statement can be clearly defined. A DSS appropriate for handling ‘wicked’ problems in policymaking should help decision-makers cope with the problem's complexity, facilitate the assessing of multiple alternatives, and favor a discussion towards a common agenda. Such DSS could promote institutional efficiency and strengthen institutional integrity. Considering such requirements, we develop a methodology for the systematic exploration of the problem's solution space using expert knowledge. The application of the methodology in a specific use case suggests the methodology could be applied in a DSS for the identification of patterns and trends in policy-relevant data, the identification of possible policy configurations, the drafting of alternative scenarios based on the possible configurations, and institutional efficiency in terms of time and resources needed to formulate a solution to the policy problem.
政策制定中基于证据的数据驱动决策支持方法
决策者的关键任务是为日益复杂的政策问题——有时被称为“邪恶的”问题——开发创新的解决方案,这些问题缺乏科学或工程中的大多数问题所具有的清晰感,在这些问题中,问题陈述可以被清楚地定义。一个适合处理政策制定中的“棘手”问题的决策支持系统应该帮助决策者应对问题的复杂性,促进对多种备选方案的评估,并有利于讨论一个共同的议程。这种发展支助事务可以促进机构效率和加强机构完整性。考虑到这些需求,我们开发了一种使用专家知识系统探索问题解决方案空间的方法。该方法在一个特定用例中的应用表明,该方法可以应用于决策支持系统,以识别与政策相关数据的模式和趋势,识别可能的政策配置,根据可能的配置起草备选方案,以及在制定政策问题解决方案所需的时间和资源方面的制度效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
400
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信