{"title":"Investigation on the Binding properties of a Coumarin Derivative to Insulin by Spectroscopic and Computational Approaches","authors":"Elmas Gökoğlu, Buse Aklar, Tuğba Taşkın Tok","doi":"10.15671/hjbc.1272350","DOIUrl":null,"url":null,"abstract":"The binding properties of insulin hormone to the potential antidiabetic coumarin derivative umbelliferone (7hydroxycoumarin, 7HC) was investigated by absorption, fluorescence quenching and molecular docking methods. The negative signs of thermodynamic parameters (H and S) indicated that hydrogen bonds and van der Waals forces were dominant in the binding mode. The effect of common metal ions was investigated on binding parameters. According to the Förster’s theory; binding distance, r was obtained as 4.17 nm. The spectral data further supported by molecular docking calculations which show hydrogen bonds between 7HC and insulin.","PeriodicalId":12939,"journal":{"name":"Hacettepe Journal of Biology and Chemistry","volume":"786 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hacettepe Journal of Biology and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15671/hjbc.1272350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The binding properties of insulin hormone to the potential antidiabetic coumarin derivative umbelliferone (7hydroxycoumarin, 7HC) was investigated by absorption, fluorescence quenching and molecular docking methods. The negative signs of thermodynamic parameters (H and S) indicated that hydrogen bonds and van der Waals forces were dominant in the binding mode. The effect of common metal ions was investigated on binding parameters. According to the Förster’s theory; binding distance, r was obtained as 4.17 nm. The spectral data further supported by molecular docking calculations which show hydrogen bonds between 7HC and insulin.