{"title":"Recent developments in microfluidic paper-, cloth-, and thread-based electrochemical devices for analytical chemistry","authors":"R. S. Malon, L. Heng, E. Córcoles","doi":"10.1515/revac-2016-0018","DOIUrl":null,"url":null,"abstract":"Abstract The attractive structural and mechanical properties of cellulose substrates (paper, cloth, and thread), including passive fluid transport, biocompatibility, durability, and flexibility, have attracted researchers in the past few decades to explore them as alternative microfluidic platforms. The incorporation of electrochemical (EC) sensing broadened their use for applications such as clinical diagnosis, pharmaceutical chemical analyses, food quality, and environmental monitoring. This article provides a review on the microfluidic devices constructed on paper, cloth, and thread substrates. It begins with an overview on paper-based microfluidic devices, followed by an in-depth review on the various applications of EC detection incorporated on paper-based microfluidic devices reported to date. The review on paper-based microfluidic devices attempts to convey a few perspective directions that cloth- and thread-based microfluidic devices may take in its development. Finally, the research efforts on the development and evaluation, as well as current limitations of cloth- and thread-based microfluidic devices are discussed. Microfluidic devices constructed on paper, cloth, and thread substrates are still at an early development stage (prototype) requiring several improvements in terms of fabrication, analytical techniques, and performance to become mature platforms that can be adapted and commercialized as real world products. However, they hold a promising potential as wearable devices.","PeriodicalId":21090,"journal":{"name":"Reviews in Analytical Chemistry","volume":"66 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2017-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/revac-2016-0018","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 26
Abstract
Abstract The attractive structural and mechanical properties of cellulose substrates (paper, cloth, and thread), including passive fluid transport, biocompatibility, durability, and flexibility, have attracted researchers in the past few decades to explore them as alternative microfluidic platforms. The incorporation of electrochemical (EC) sensing broadened their use for applications such as clinical diagnosis, pharmaceutical chemical analyses, food quality, and environmental monitoring. This article provides a review on the microfluidic devices constructed on paper, cloth, and thread substrates. It begins with an overview on paper-based microfluidic devices, followed by an in-depth review on the various applications of EC detection incorporated on paper-based microfluidic devices reported to date. The review on paper-based microfluidic devices attempts to convey a few perspective directions that cloth- and thread-based microfluidic devices may take in its development. Finally, the research efforts on the development and evaluation, as well as current limitations of cloth- and thread-based microfluidic devices are discussed. Microfluidic devices constructed on paper, cloth, and thread substrates are still at an early development stage (prototype) requiring several improvements in terms of fabrication, analytical techniques, and performance to become mature platforms that can be adapted and commercialized as real world products. However, they hold a promising potential as wearable devices.
期刊介绍:
Reviews in Analytical Chemistry publishes authoritative reviews by leading experts in the dynamic field of chemical analysis. The subjects can encompass all branches of modern analytical chemistry such as spectroscopy, chromatography, mass spectrometry, electrochemistry and trace analysis and their applications to areas such as environmental control, pharmaceutical industry, automation and other relevant areas. Review articles bring the expert up to date in a concise manner and provide researchers an overview of new techniques and methods.