{"title":"Optimal Field Voltage and Energy Storage Control for Stabilizing Synchronous Generators on Flexible AC Transmission Systems","authors":"David M. Rosewater, Q. Nguyen, S. Santoso","doi":"10.1109/TDC.2018.8440436","DOIUrl":null,"url":null,"abstract":"Power systems can become unstable under transient periods such as short-circuit faults, leading to equipment damage and large scale blackouts. Power system stabilizers (PSS) can be designed to improve the stability of generators by quickly regulating the exciter field voltage to damp the swings of generator rotor angle and speed. The stability achieved through exciter field voltage control can be further improved with a relatively small, fast responding energy storage system (ESS) connected at the terminals of the generator that enables electrical power damping. PSS are designed and studied using a single-machine infinite-bus (SMIB) model. In this paper, we present a comprehensive optimal-control design for a flexible ac synchronous generator PSS using both exciter field voltage and ESS control including estimation of unmeasurable states. The controller is designed to minimize disturbances in rotor frequency and angle, and thereby improve stability. The design process is based on a linear quadratic regulator of the SMIB model with a test system linearized about different operating frequencies in the range 10 Hz to 60 Hz. The optimal performance of the PSS is demonstrated along with the resulting stability improvement.","PeriodicalId":6568,"journal":{"name":"2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","volume":"1 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDC.2018.8440436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Power systems can become unstable under transient periods such as short-circuit faults, leading to equipment damage and large scale blackouts. Power system stabilizers (PSS) can be designed to improve the stability of generators by quickly regulating the exciter field voltage to damp the swings of generator rotor angle and speed. The stability achieved through exciter field voltage control can be further improved with a relatively small, fast responding energy storage system (ESS) connected at the terminals of the generator that enables electrical power damping. PSS are designed and studied using a single-machine infinite-bus (SMIB) model. In this paper, we present a comprehensive optimal-control design for a flexible ac synchronous generator PSS using both exciter field voltage and ESS control including estimation of unmeasurable states. The controller is designed to minimize disturbances in rotor frequency and angle, and thereby improve stability. The design process is based on a linear quadratic regulator of the SMIB model with a test system linearized about different operating frequencies in the range 10 Hz to 60 Hz. The optimal performance of the PSS is demonstrated along with the resulting stability improvement.