Meteorological forecasting based on big data analysis

IF 2.2 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Data Pub Date : 2021-04-05 DOI:10.1145/3460620.3460622
Shadi A. Aljawarneh, J. A. L. Torralbo
{"title":"Meteorological forecasting based on big data analysis","authors":"Shadi A. Aljawarneh, J. A. L. Torralbo","doi":"10.1145/3460620.3460622","DOIUrl":null,"url":null,"abstract":"In this paper, we present the main ideas behind the development of a system that can be used to deal with meteorological big data. In particular, the system captures data online and downloads it locally onto a MongoDB database. After that, the user can create a particular database and corresponding minable views for analysis. The results provided by the systems are predictive models with the ability to predict some weather-related variables, such as temperature and rainfall. The system has been validated from a triple perspective (usability, experts’ validation, and performance assessment), obtaining satisfactory results. This paper aims to be a brief guide for authors who intend to developed similar systems either in the meteorological field or other domains generating big amounts of data.","PeriodicalId":36824,"journal":{"name":"Data","volume":"22 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1145/3460620.3460622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 12

Abstract

In this paper, we present the main ideas behind the development of a system that can be used to deal with meteorological big data. In particular, the system captures data online and downloads it locally onto a MongoDB database. After that, the user can create a particular database and corresponding minable views for analysis. The results provided by the systems are predictive models with the ability to predict some weather-related variables, such as temperature and rainfall. The system has been validated from a triple perspective (usability, experts’ validation, and performance assessment), obtaining satisfactory results. This paper aims to be a brief guide for authors who intend to developed similar systems either in the meteorological field or other domains generating big amounts of data.
基于大数据分析的气象预报
在本文中,我们介绍了开发可用于处理气象大数据的系统背后的主要思想。特别是,系统在线捕获数据并将其本地下载到MongoDB数据库。之后,用户可以创建一个特定的数据库和相应的可挖掘视图进行分析。这些系统提供的结果是预测模型,能够预测一些与天气有关的变量,如温度和降雨量。从可用性、专家验证和性能评估三个方面对系统进行了验证,取得了满意的结果。本文旨在为打算在气象领域或其他产生大量数据的领域开发类似系统的作者提供简要指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Data
Data Decision Sciences-Information Systems and Management
CiteScore
4.30
自引率
3.80%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信